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ABSTRACT

The relationship between optimal control and problems in
timberland management is discussed; and the usefulness
of the control theoretic approach is demonstrated. A
two-part forest management model, consistent with the
optimal comtrol approach is derived: the first part
consists of economic/biological objectives which are to
be optimized; the second part is the physical forest
evolution model. A solution algorithm based on a control
vector iteration realization of the discrete maximum
principle is derived, and details of its implementation
are considered. The solution of a specific problem is
discussed; and results are compared with those obtained
previously from another model. PROSE listings and I/0
are provided.




I. INTRODUCTION

The study of capital theory, like other branches of economics, has in the
past been constrained to the consideration of stationary equilibrium.
Capital theory, however, is concerned with the growth of capital over time.
Until recently the study of this process was confined to a "snapshot"
approach as stationary equilibrium models were applied sequentially in an
effort to gain some insight into the dynamics of growth. Recently
developments in optimal control theory have allowed the consideration of
the dynamics of capital growth; and it can be shown that optimal control
theory is formally identical with capital theory, and that its main insights
can be attained by strictly economic reasoning. An excellent economic
interpretation of optimal control theory is presented in [1j.

The basic problem facing any manager responsible for the management of
resources and assets is how to best manage these resources to attain the
objectives of the organization or his constituency. In general, this
objective is the maximization of wealth or benefit over a given planning
horizon. It will be shown that this problem is correctly approached using
optimal control theory in that it provides a truly optimum solution and

specifies the policies that must be implemented within the planning horizon
to attain that solution.

The manager of public or private forest lands is faced with the above
problem.

The purpose of this paper is to show the usefulness of optimal control
theory in assisting forest managers to optimize their management decisions,
and to present and discuss an optimal control model for determining these
decisions. Besides allowing the consideration of nonlinear demand and

cost functions, and the application of constraints to discrete time periods
or segments of the assets managed, optimal control theory provides the
forest manager with a truly optimal solution consistent with his objective
and constraints. Other nonlinear programming techniques generally do not
obtain an optimum time path for management action. In general the
solution technique used in nonlinear approaches involves the application
of a static optimization technique sequentially from period to period
within the horizon, resulting in a suboptimal solution. The impact of
actions taken in subsequent periods is not adequately considered by this
solution technique. In the optimal control approach to forest management,
the entire planning horizom is considered as an entity; and the impact

of decisions on subsequent periods is thus taken into account.

We begin with a brief survey of the work previously done in forest modeling,
The treatment is not intended to be exhaustive, nor is it limited strictly
to optimal control models. Following this discussion we present a general
discrete optimal control initial value problem and show its relationship

to forestry problems, thus demonstrating the appropriateness of the optimal
control approach for the solution of timberland management problems.

After this we derive the two-part model which is the main concern of this
work: the Timberland Investment Management Model (TIMM). TIMM consists

of a physical forest evolution model, which keeps track of the planting,
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growing, and harvesting of the trees, and an economic model describing the
financial objectives of the forest manager. The physical forest model is
essentially invariant to changes in the economic model, and this provides
a high degree of flexibility in the construction of the economic model.
Also, it is possible to include biological goals in the economic objective,
in the form of penalty functions, or additional transfer functions.

After the model has been established, we discuss the method used to solve it.

The underlying solution structure is embodied in the discrete maximum principle,

which is closely related to the Maximum Principle of Pontryagin [2]. (The
exact nature of this relationship is discussed in Appendix A.) Except in

the simplest cases the discrete maximum principle, per se, does not provide

a solution to nonlinear problems; some iterative technique must be used in
addition. There are a number of possibilities; the method employed here is
known as control vector iteration. The particular implementation of discrete
maximum principle/control vector iteration used to solve TIMM is known as EPOC,
an acronym for Economic Planning via Optimal Control. It is a general solution
algorithm for discrete optimal control initial value problems, coded in PROSE
for the CDC 6600 computer. Use of the PROSE language leads to automatic
generation of the partial derivatives (a feature not available in other
languages) required by the solution technique, thus eliminating the need to
derive and code derivative formulas. The PROSE listing of EPOC/TIMM is
included as Appendix B.

Having developed a solution technique, we present results obtained using a
modified version of the model due to Walker [3]. The results obtained from
EPOC/TIMM show both similarities and dissimilarities to those of [3]. The
results of the present model are interpreted economically, and compared with
those of Walker.

Survey of Previous Work

There are already a large number of forest management models, both linear

and nonlinear; and it is beyond the intended scope of this paper to provide
more than a scant review of any of them. For the most part, the usefulness
of any one of these models is generally limited to a narrow range of forestry
problems; and in many cases the solutions obtained even to problems within
this range are not altogether satisfactory.

As would be expected, there are many linear models. Among these are the
models discussed in a compendium of such models, due to Johnson and
Scheurman [4], the model of Nautiyal and Pearse [5], and the models Timber
RAM and MAX-MILLION. A blanket criticism which can be made of such models
is simply that they are linear; and the natural formulation of many forest
management problems is inherently nonlinear. One way to circumvent this
difficulty is to piecewise linearize the nonlinear problem, and solve each
piece with an LP model. We discuss some consequences of this in Section V.



Nonlinear models also abound; and most, but certainly not all, of these are
formulated as optimal control problems. Many of these have used dynamic
programming (cf. Bellman [6]) as the solution technique, which as it is well-
known, is handicapped by the "curse of dimensionality."” Three examples of
such models are those of Amidon and Akins [7], Hool (8], and Schreuder [9].
In the first of these optimal levels of growing stock for an even age class
forest were determined for age classes of length 5 years, over a 65-year
rotation period. However, no details of either the economic model or the
computational results are reported. The model [8] 4is nondeterministic.

It employs dynamic programming to determine control activities in each
planning period, for a range of possible conditions of the forest. At each
period probabilities for attaining a given condition are prescribed; and
optimization takes place on the most probable conditions. The model was
solved for a small example problem. In [9] dynamic programming was used to
determine optimal thinning and rotation schedules for an even age class
forest. This was done analytically; no computational results were reported.

Nislund [10] used the maximum principle to solve the same problem as solved by
Schreuder; but without the even-age forest assumption. Sethi [11] uses the
discrete maximum principle to determine a fertilization program with which

to optimize the present value of the forest. No computational results are
reported in either of the above cases.

In [3] the net present value of a forest is optimized over a fixed planning
horizon while accounting for decreasing demand with increasing volume, and
distributing the harvest between two markets. While the above mentioned
nonlinear models are optimal control problems, the model given in [3] is not.
It does not contain separately identifiable controls, states, and objectives
as a typical control formulation would; and the solution technique is rather
‘ad hoc. Nevertheless, reasonable results were obtained, and the basic model
has since been extended to the model known as ECHO (Economic Harvest
Optimization).

Optimal Control and Its Application to Forestry

A typical optimal control problem consists of the following items:
(a) state variables (including initial and/or boundary states)
(b) control variables
(c) objective function
(d) transfer functions

The goal of an optimal control problem is to move some given system from

one point (in space, time, or both - or maybe neither) to another in the
"pest" possible manner, where "pest" 1s measured in terms of the value of

the objective function. Moving the system from one point to another involves
inducing a change in various of the attributes which characterize the system.
Collectively, these attributes are usually termed the "state" of the system;
and they simply provide some, hopefully, meaningful quantitative description
of the system being studied. An ijndividual attribute is called a state
variable. Changes in the system state are caused by applying one or more



of the controls, or control variables. (These are often called "decision"
variables or "policies.") These control variables appear explicitly in the
transfer functions (known also as state equations) which quite literally
transfer the system from one state to a succeeding ome. The objective
function depends explicitly on the state of the system and thus dmplicitly
on the controls; but it may also depend explicitly on the control variables,
as well.

Since we will later be dealing exclusively with a discrete version of the
optimal control approach, the optimal control equations given below will be
in discrete form.

A typical optimal control initial value problem has the following form:
maximize N

P = z P (X_; U) + GX ()

n=1
subject to
Xn = Fn(xn—l,un) with Xo given, (2)
and
Un,min = Un = Un,max _ (3)

Xn,U , and F, are vectors; and the inequalities in (3) clearly must apply
to corresponding components. It is hoped this abuse of notation will not
be overly confusing, as it is quite convenient. Equation (1) is the
objective function, written as a sum of objectives for each period, plus a
term depending only on the final system state. Equation (2) is a vector
equation representing the totality of transfer functions which cause the
system to progress from state n-1 to state n due to the application of the
controls, U,. Finally, the inequalities (3) represent a component of the
problem which precludes the use of the calculus of variatioms, and forces the
use of some form of the maximum principle or dynamic programming. That is,
the control variables are constrained; and it was a need to solve such
problems which led to the development of the maximum principle and dynamic
programming by Pontryagin and Bellman, respectively. (A good comparative
treatment of these two approaches can be found in Intrilligator [12].)

Forest management problems, and in fact, many resource management problems
in general, fit into the above framework quite naturally, as we will now
show. Obviously, the forest problem has some goal or objective which must
be met. This objective is nearly always of an economic nature, for
example maximization of net present value over a planning horizon of N
periods; but additional, usually biological, goals may also be involved.

A typical example is the conversion to even flow harvest (cf. Nautiyal

and Pearse [5]). Most objectives of these types can readily be expressed
in the form of (1).



The forest, being a physical system, can be represented in terms of some
set of physical attributes. Quite a variety of quantities have been used
to characterize the forest in the various earlier models. In the model
presented here, we have chosen to express the state of the forest in

terms of the age class/type site area distribution. By this, we mean that

each state variable (and its corresponding transfer function) corresponds
to the area of land of a particular type (flat, hilly, etc.) forested by
a particular species of trees of a specific age.

Finally, the evolution bof a managed forest is controlled by various
activities such as thinning, harvesting, and planting. Because we

have described the state in terms of very specific areas of tree types
and ages we can define the controls as the intensity of the various
management activities applied to each of these areas. This completes the
specification of the optimal control formulation.

As can be seen, each major portion of the forest management problem fits
naturally into one of the parts of a typical optimal control problem.
The preceding discussion is summarized in Table 1.
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11, THE MODEL

As mentioned above, EPOC/TIMM comsists of two parts: 1) economic/biological
objectives, '2) forest state evolution. We will begin by discussing, rather
generally, the formulation of the economic portion of the model. (A specific
model will be discussed in more detail in Section IV.) We then develop the
equations of the physical forest.

FEconomic/Biological Objectives

In considering the appropriate objective function to utilize in EPOC/TIMM,

the position or charter of the forest manager must be considered. The
objective of the manager of privately owned forest land may be to maximize
the return on his investment, where discounted net cash flow is the appropriate
measure of efficiency. The manager of public lands, although not exempt from
economics, may have to consider a constituency beyond stockholders, customers,
and employees when optimizing the utilization of the resources under his
responsibility. In this case the appropriate objective function would be
modified to reflect these additional constraints. An excellent review of the
economic aspects of various objectives used in forest management is given

in [13].

The objective function utilized in the present case is given by

N
R -C
P = A 0 , (1)
g;; @+ )"

which is simply the equation to determine the net present value, P, of an
investment over discrete time periods. Here Rn and Cn are revenue and costs,

respectively, for period n; and r is the discount rate.

In the present work we will ignore the problems encountered with the above when
capital rationing and rising marginal cost of capital occur. An adequate
discussion of these effects is presented in [14]. The objective function
utilized, therefore, is oriented toward the private owner of forest land.
However, two points should be noted. First, the appropriate use of penalty
functions in equation (1) and/or constraints on the values of controls

(e.g., harvest, regeneration levels, etc.) over the planning horizon can be
used to reflect the management problem faced by the manager of public forest
lands. Secondly, the utilization of the model without these penalty functions
or control constraints can be used to measure the cost of any benefits derived
from the noneconomic use of forest lands (e.g., recreational uses, flood
control, etc.). Therefore, cost/benefit tradeoffs can be accomplished, using
the model with the present objective function. In general any objection
function can be substituted for equation (1), constrained only by the condition
that the variables in the objective be related to the state and/or control
variables of the physical forest model.

In evaluating (1) we consider the terms in the summation separately. In
forest management problems, the costs arise from several main sources. These
are: 1) regeneration, 2) harvest and thinning, 3) fixed costs. Others could
certainly be considered, but for the present we will assume that any other
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costs may be included in one of the three ]Jisted above. Thus, we have

+C. _+ (2)

cn = CR,n H,n CF,n°

Each of the terms in (2) may be computed using whatever degree of detail is
felt necessary or desirable within the framework of the particular problem
being studied. (For example, harvesting and thinning costs may be
distinguished.) In general, we expect that the regeneration costs should
depend on the acreage regenerated and possibly also on the type of land and
species of trees, i.e., the type site, involved. Harvest costs depend upon
the volume of timber harvested, but more specifically on the volume per acre.
A typical harvest cost function is given in [3], and in fact, will be used

in the model discussed in Section IV. The shape of the harvest cost function
has a significant impact on the optimal solution. The function, shown
schematically in Figure 1 (taken from [3]), relates the cost per unit

volume of timber harvested to the volume per acre of the stand (stand yield).
From the shape of the curve it can be inferred that the unit cost of )
harvest decreases with increasing timber demsity, as the "fixed" costs
associated specifically with harvesting are amortized over larger volumes.
The fixed costs term provides a convenient term in the cost function for
including such things as investment in additional acreage and equipment,
general overhead, etc. It should be noted that CF n as well as the other

’
two terms, may depend on the specific planning period under consideration;
and even the mathematical form of these functions is permitted to change from
period to period in the present model. That is, shifts in plant cost
functions due to technological advances and/or capacity changes can be included.

The cost functions used in the present EPOC/TIMM model, as noted above, have
been taken from [3]. These functions do not include a cost penalty for signifi-
cantly decreasing the harvest volume. In practical applications, the decision
maker is generally faced with the problem of utilizing a plant and/or

equipment which is designed for an optimum capacity, where the unit cost

of processing increases significantly with increases or decreases in
utilization. This effect is shown graphically in Figure 1. The results
presented in this paper would be noticeably altered if a similar relation-

ship had been included. In order to provide a comparison to prior work,
however, the cost functions in [3] were not revised.

The revenue in period n will depend generally on the volume of timber marketed
in that period. Moreover, the price paid per unit volume may be assumed to

be influenced by this volume; and, of course, it could be expected that

prices (and even the level of demand) might vary from period to period.

Thus, an implicit expression for the revenue in period n is

R = Rn(VH,n,p(VH’n,n))- 3

In this equation, vH,n is the total volume of timber harvested in period n,
and p is the price paid per unit volume. This can be generalized to
include separate prices for thinning and harvesting.

-8-
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In constructing a specific model some thought should be given to the appro-
priate discount rate, r, an individual decision maker should utilize when
ranking potential investment in private or public forest lands. Certainly
the owner of private forest lands has greater direction and data on which
to base this decision since the private firm competes for capital in both
money and equity markets. An adequate discussion of the methods a private
firm can utilize in measuring its past and present performance in these
markets to determine a measure of its cost of capital, and perhaps an
appropriate discount rate, is presented in [14].

The manager of public forest lands is faced with a more poorly defined
problem in determining the appropriate rate to utilize. There is certainly
an opportunity cost assoclated with the investments made in public forest
lands. Discount rates are now utilized by various government agencies in
completing cost/benefit analyses of alternative investments. The Office

of Management and the Budget is perhaps the best source of information to
utilize in deriving an appropriate discount rate.

Certain assumptions are inherent in any approach to economic modeling. The
following are implicit in the foregoing development, and should be noted.

o The existence of capital rationing or rising marginal cost of
capital are assumed not to apply. Adjustments required for
these cases are considered in [14].

o Revenue received from the sale of timber products is the measure
of benefits derived from the investment in forest land. However,
the opportunity cost (net present cost) of noneconomic objectives
can be quantified by the model.

o] The net cash flow derived from the sale of timber products in a
given period is reinvested at the discount rate utilized in the
net present value calculation.

o Timber harvested or thinned in a period is assumed to be
processed and sold in the same period (i.e., inventory levels are

not considered).

Before proceeding to the derivation of the equations representing the
physical forest, we briefly discuss two more topics: .multiple type sites
and resource allocation.

The problem of multiple type sites (defined for this model as any segmenta-
tion of the acreage being managed other than age classes) is easily

handled in EPOC/TIMM. Differentiation of various type sites in the
economic model can be accomplished if different cost functions and/or
markets apply for different type sites over the planning horizon .OT for a
given period within the horizon. An important point to remember is that
the solution technique optimizes the solution of all type sites over the
horizon subject to the given objective function and constraints.
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The utilization of various type sites in EPOC/TIMM allows the manager of
public forest lands to differentiate land segments by use (i.e., recreational,
flood control, etc.) and to more easily define constraints on the control
levels for particular type sites over the planning horizon. In this way
EPOC/TIMM provides the possibility of leaving land parcels intact throughout
a planning horizon as do the Type I LP models discussed in [4]. ‘

Another important economic consideration in the management of forest lands
is the efficient allocation of resources between type sites and/or the
allocation of forest products amongst competing markets. This problem has
been addressed using linear programming techniques in [15]. The important
cconomic difference between the solution technique utilized in [15] and that of
EPOC/TIMM is that in [15] the harvest levels for various production

regions are given; and the allocation of forest products to markets, and

the utilization of resources to provide these products, proceeds from these
known harvest levels. In EPOC/TIMM the optimum harvest level is directly
influenced by the demand and cost functions of the various markets,
resulting in a true optimal solution.

The Physical Forest Model

The physical forest model utilized in TIMM, although it accomplishes the

same goals as do various other forest models, is constructed much dif-
ferently than are most of its predecessors. It is composed simply of
transfer functions for the optimal control algorithm, and nothing more. In
this respect it is extremely compact and simple, as a glance at MODEL . TRANSFER
in the PROSE code, Appendix B, will indicate. At the same time, the model is
quite general, and powerful; it faithfully reproduces the various activities
associated with forest management, and their effects on the forest. It
permits the determination of not only when various management activities
should be applied, but also to what extent, so as to achieve desired manage-
ment goals. Moreover, it allows one to constrain the intensities of any

one, or all, of the management activities in any period, or in every period.

Above all, the generality of the physical forest model permits the study of
a wide range of economic/biological objectives without change to the forest
model itself. This is exactly what one should expect if a model is to
provide a faithful representation of a forest, for the forest does not know
of man's economic objectives. It simply grows from year to year, affected
only by the activities imposed by those who manage it, and by the forces

of nature. (The latter is not considered in the present model.)

The transfer functions were introduced formally in equation (2) (Section I).
We will in this section give their explicit representations. As we have
remarked earlier, the transfer functions simply move the state of the

forest to the next succeeding state by applying the controls (management
activities) to the present state. Hence, the left hand side of (2)

(Section I) is the state of the forest at the end of period n during which
controls Un have been applied. For a forest consisting of 1 age classes and
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J type sites, the state vector X, for the nth period may be expressed in terms
of its components as

X = (x b ces .
n 1,1,0°72,1,n’ ’$I1,l,n’xl,2,n’x2;2,n""’x12,2,n,...

(1)

oo xl,J,n""’xIJ,J,n) n=0’1’.'.’N

The subscripts on the age class indices serve as an indication that

different type sites may be composed of different numbers of age classes.

Each component of Xn has associated with it a transfer function fij o S° that
’

%39,n = F13,0%0-1,%’ (2)

From the form of the arguments of the function fij n the ijth state at

9’
period n may be determined by other than the ijth state at period n-1.
The regeneration state X, i n,is an example of this (see below).
b ’

The control vector Un’ first given in the inequalities (3) of Section I,

also may be written in terms of its components:

= (u . . _
Un ( l’l’n’-o-’ull,l’n,oo-’ ulr,J,n,-..,uIJ’J’n) n= l,oco,N (3)

It is important to notice the one-to-one correspondence (ignoring the initial
state components) between the components X and those of U,. The implication
of this is that for any particular age class/type site parcel at period n,
one and only one management activity is permitted. This does not preclude
the possibility of no activity at all, since this case may be expressed
mathematically as a zero intensity of any of the possible activities. The
admission of only one management activity per age class/type site, per
period, is for convenience only. It has nothing to do with model structural
considerations; but on the other hand, it is felt that this should supply
adequate management control. At any rate, the restriction can be lifted

if this is felt necessary.

Before going on to the explicit representations of the transfer functions
it should be remarked that the other members of the inequality (3) of
Section I have representations analogous to (3) in the present section.
The significance of this is that each component of the control vector U,
is bounded above and below; and this provides the user of the model with a
high degree of control over the specification of intensity of activity

to be applied to each segment of the forest in each planning period.

-12-



The transfer functions of the current forest model reflect application of
three basic management activities:

(a) Regeneration
(b) Thinning
(¢) Harvest

However, unlike the version of the model reported earlier in [16], thinning
is merely a special case of harvesting (the opposite of the approach

taken in[10]). This leads to a great simplification to the transfer function
associated with regeneration; and it is felt that no great sacrifice of
model flexibility has been incurred. The basic assumptions used in con-
structing the current version of the model are essentially the same as

those given in [16], except that it is now possible to drop the last
assumption used in that development. Namely, we have:

(a) The time spanned by any age class coincides with the length of
one economic planning period.

(b) Every age class may be thinned or harvested, with the exception
of the first, which is vacant land.

In contrast to the earlier treatment, land may or may not be regenerated
immediately after harvesting. This decision can be left to the solution
algorithm, or it may be made by the user of the model.

Each component xij n of the vector Xn represents the area (or volume, or

number of trees)* in age class i (d.b.h. class i) on type site j in period n.
In achieving this state, particular components of Un are applied to certain

components of the state vector xn—l representing the forest state in period n-1l.

It is clear from (1) that each type site has its own set of transfer functions,
so the "j" subscripts will be deleted, for notational clarity, from the
following development with the understanding that the results obtained must be
repeated for each of the J type sites.

In arriving at the regeneration transfer function the following items must be
considered: amount of land available for regenmeration, fraction of total to
be regenerated, and amount of land returned to the regeneration pool due to
harvest and thinning.

The amount of land available at the end of period n for regeneration beginning
in period nt+l consists of two components. First, at the beginning of period n,

there are X; . o units of vacant land left from the end of period n-1. During
?

*In the present discussion we shall always consider age class/type site area
distributions. However, it is quite possible to formulate a problem in terms
of volumes or numbers of trees,and to use d.b.h. classes rather than age classes.
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period n some fraction (determined either a priori due to some constraint and
supplied as input data, or by the solution process) of this vacant land will
be regenerated. Indeed, this fraction is precisely the regeneration control

variable for period n, Uy e Because UL is a fraction it satisfies the
9’ 3
inequalities
< < 1:
0su <1 (4)

but more generally,

Yl,n,min = Y1,n = Y1,n,max (5)

u .
where ul,n,min and 1,n,max each satisfying inequalities such as (4) separately;
and in addition

“1,n,min £ Y1,n,max ° (6)

After the control U4 is applied to X 4-1? the area remaining for regeneration
? ?
in period n+l is Xy n_l(l—ul n)' But there is a second component of area which
? .

will contribute to the size of the regeneration land pool. This comes from the
harvesting and thinning of land during the nth period. Since thinning is now a

special case of harvesting, the area vacated by these processes may be expressed
simply as

’.TMH

xk n-l k, n

where inequalities such as (4), (5), and (6) must be satisfied by each uy p;
and I is the maximum tree age (more accurately, maximum age class index)
for the particular type site under consideration. Thus the total area

available for regeneration at the beginning of period n+l (end of period n)
is

x'l,n 1 n- 1( ) + Zxk n-l“k n 7

k=2

It is clear that the amount of land regenerated in period n is just

X 1% Applying assumption (a) we see that this must move into period
’ ’

n+l as age class 2 area. Hence, the area in age class 2 at the end of

period n is

xZ,n = x1,n—lu1,n . (8)
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As the model is presently formulated there is just one other form of transfer
function. This one form can account for thinning and harvesting in all age
classes. While assumption (b) was used in obtaining (7), we again appeal
specifically to assumption (a) in constructing the remaining transfer
function, as was done for equation (8). At the end of period n~1 (beginning
of period n) there will be xi—l,n—l units in age class i-1. During the nth

period a fraction Uyi.n of this amount will be harvested. The remainder
| ]

will grow on into period n+l. But it can no longer be in age class i-1;
because of assumption (a) it will have aged by one age class. Thus, at the
end of period n, the units of area in age class 1 must be

1 i=3,4,...,I. 9)

Xi,n - Fi-1,n-1v T U 3,0

We note that if no harvesting is done, i.e., Yl = (0, all of the area
?

just moves into the next age class in the succeeding planning period.

Besides their simplicity, the transfer functionms formulated as done here
automatically conserve the area of land on which the forest enterprise

takes place. Thus, no acreage constraints such as those found in the various
LP models need be imposed. On the other hand, as will be seen in the next
section, the equations (7), (8), and (9) are, at least formally, treated

as constraints in the solution algorithm. However, the implication of this

is rather different here than would be the case in static nonlinear programming.

-15-




III. SOLUTION TECHNIQUE

The Discrete Maximum Principle

The solution method applied to the above model is known as the discrete

maximum principle which, as noted earlier, is related to the Maximum Principle
of Pontryagin. Both discrete and continuous versions of the maximum principle
have been used previously in solving forest management models. A large

number of discrete problems from various fields are solved analytically in [17],
one of the basic references for the discrete maximum principle. However, the
treatment given here follows more closely that of [18].

Equations (1), (2) and inequalities (3) of Section 1 form the basic problem
structure for development of the discrete maximum principle; we shall repeat
these here for ease of reference.

N
P = E :Pn(xn-l,u-n) + G(XN) (1)
n=1
x = .
o Fn(xh-l,Un)’ with Xo given; (2)
< =
Umin,n _Unﬁ Umax,n n=1,2,...,N | (3)

The transfer functions, equation (2), can be treated formally as equality
constraints by writing

X -F X ) =0. (4)

n n n—l,Un

This vector equation is then adjoined to the objective function, equation 1),
by employing a vector of Lagrange multipliers k? often called co-variables or
co-state variables.* Thus, corresponding to (1),we obtain the Lagrangian

N :
L(X,U3}0) = z (B_(X__;,U0.) = A [X = F (X _;,0)]} +GXQ. (5)
n=1

In this form the problem is no different, conceptually, than problems in
static optimization; and we are thus led to seek necessary conditions for an
optimum in the same manner in which we would for that case. Namely, we set
to zero the partial derivatives of L with respect to X,U and A.

*These names arise from the quite deep, but beautiful, mathematical theory
underlying this approach (cf., Abraham, Foundations of Mechanies). But,
we shall here refrain from the use of such terminology in favor of the
more familiar, Lagrange multiplier.

-16-



This is formally equivalent to applying the Kuhn-Tucker theorem to a -
problem having-only equality constraints. Since X,U, and A are all vectors,
we differentiate L with respect to the components.*

oP oF

oL n n
= — +A w—=-X_,=0 n=n-= 2,3,...,N (6a)

Hyp %y B %, ol

L _ _ 3G _

_'axN xN + axN 0 (6b)
3P 3F

oL _ _n _n_ =

30" -3 T *aan 0 n=1,2,...,N (7)

n n n
3L
Bkn xn - Fn 0 (8)

We immediately notice that (8) is just equation (4), implying that the
constraints are satisfied. Furthermore, if we rewrite (6a) and (7) as

a_ - =
335_1 [Pn + AnFn] An—l 0

9 =
aUn [Pn + ann] 0

we are led, naturally, to an important comstruct known as the Hamiltonian;
that is,

H (X _;,U5A) = Bo(R 5,000 + A F (R ,,00) 1 =1,2,...,N (9)

Thus the conditions (6a) and (7) become, respectively,

3 |
N i S (10)
n-1
2
= =0 : (11)
n

Equation (10) is often called the adjoint equation; (6b) provides a
starting value for a backward recursive evaluation of (10):

(12)

o,

*
It should be noticed that again we have been lax with notationm. By the
Kuhn-Tucker theorem (6a), (6b), (7), and (8) must hold at the solution.
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Although it is not necessary for the development here, it is of some
interest to notice that since (2) holds, we can write

X =_'9" (13)

using (9). This should be compared with (10). It is the symmetry
(actually skew-symmetry in the continuous case) of these two expressions
which leads to the term "adjoint" for equation (10).

So far we have done nothing with the inequalities (3). We claim that the
necessary conditions already obtained above apply also to any combination
of inequality comstraints on the states and/or controls. To see this,

we consider a general inequality constraint

gn(xn—l’Un) > 0. (14)

If this inequality holds, then there exists a positive slack variable Zi
such that*

2
g (X _,,U) = 2] =0 : (15)

Equation (15) is in the same form as (4) and can thus be included in the
Lagrangian (5) by utilizing an additional Lagrange multiplier. Moreover,
we see that Z, can be considered as merely another state variable with

/E; the corresponding transfer function. Hence, equations (10) and (13)
can be used to determine values of An and Zn respectively, just as for
X,. Clearly, the inequalities (3) are a special case of (14), with no
dependence on xn_l, since we can write

U -U_ >0

- >
Un Umin,n,- 0, max,n 10 - .

The preceding development serves as a proof of the following:

Because we assume that the problems with which we deal are nonlinear, no
harm is done to the problem structure by utilizing a nonlinear, rather

than linear slack variable. This technique has proved valuable in both
theoretical and computational developments. The main advantage gained from
use of the nonlinear term is that it may be chosen so.as to be nonnegative
automatically; and the additional comstraints Z > 0 need not be included

in the problem structure, in contrast to the linear case.
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Theorem (Discrete Maximum Principle)

In order that the sequence of vectors {Un} be the optimal controls
corresponding to the control problem given in (1), (2) and (3), the
following conditions must obtain:

either

i) —_n=0’ n=l’2,o..,N

or
ii) Un is such that Hn is a maximum

1ii) There exist Lagrange multipliers satisfying

. oH
. _ 3G _ _notl = _
AN =% and An 32; n=1,...,N-1.
. BHn
(1V) Xn = ﬁ n= l’ooo,No

Some remarks are in order concerning this theorem. Once again we stress
that these are necessary conditions. Hence, even when they are satisfied,
an optimal solution may not have been obtained; but even more significant
is the fact that if they are not satisfied, the corresponding solution
generally cannot be optimal. In particular, condition iii) is often
neglected in the decomposition of large problems, and in such cases it
cannot be assumed that the solution is optimal. The Lagrange multipliers
can be thought of as the "glue" which holds the decomposition together;
and if they do not exist, the decomposed problem cannot yield the correct
result for the complete "undecomposed" problem.

Condition i) above, is analogous to the usual first derivative condition
from ordinary calculus. The notation of 1) is somewhat strained since U,
J

is a vector; and i) actually implies ;;ajlj conditions, in light of the

development in Section II. 1In the event that the maximum of occurs

at control boundaries, ii) must be applied. Condition iv) as stated above

implies nothing more than the satisfaction of the equality constraints of
J
equation (4); hence it also implies i: jIj conditions. Of course the

=1
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incorporation of inequalities such as (l14) leads to more conditions; and
while this provides a convenient theoretical tool, in practice other methods may
also be used, particularly when only inequalities of the form (3) are involved.

Control Vector Iteration

It is essential to realize that in most cases maximum principles provide

only necessary conditions for the existence of a solution. Hence, two more
elements of a solution algorithm are needed. These are sufficient conditions
for the existence of an optimum, and some concrete solution procedure.

(These may often be combined, as is done in the algorithm to be discussed
below.) If the problem is convex, then the necessary conditions are, in fact,
sufficient; and if the problem structure 1s fairly simple it might actually
be possible to solve directly the system of equations implied by the condi-
tions of the preceding theorem. However, this is not typically the case; and
some iterative procedure is usually needed.

For initial value problems such as that described by equations (1), (2),

and (3) efforts to satisfy the above conditions lead quite naturally to a
solution technique known as control vector iteration, or iteration in

policy space as it is sometimes termed in an operations research context.

The basic steps in such an approach are: 1) guess U, for all n=l,...,N; )

2) use these in equation (2) to determine all X,'s; (3) evaluate the

P,'s; 4) calculate Ay from 3G/3Xy, and then calculate Hys 5) successively evaluate
An’ n=N-1,...,1, using A, = ann+l/axn.

What one really is trying to find is an improved value of U,. As each Aj,
and hence Hy, is calculated it i5 possible to obtain 3H,/3U;. Then using
the usual gradient stepping technique from static optimization,

oy (@-1)
U(m) _ U(m-l) 4 DB , (16)
n n BUn

where m denotes iteration number.

SH (m-1)
Clearly if 35— = 0, f.e., 1f 1) is satisfied, then U ™ =y (1),

and convergen%e wlll have been achieved. In (16) € 1s a step length, which
can be calculated by any one of a variety of schemes. We present a
particular omne below.

With the new values of U, obtained from (16) the procedure is restarted
unless aun/aun = 0 for a2l1 n=l1,,..,N, in which case the optimal controls
have been found.

We can summarize the preceding descriptive formulation in a formal algorithm
which forms the basis for the code presented in Appendix B.
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Algorithm (Control Vector Iteration)
1) Guess values of the control vector Un for all periods n=1,2,...,N.
2) Use the above guesses and the initial condition_xo to evaluate

X =F (X
n n

n-l’Un) and Pn(xn—]_’Un) n= l’ LI ’No

3) Using XN obtained above,calculate

oG
AL = 22 .
N BXN
4) For n=N,...,2 form the nth Hamiltonian

Hn = Pn(xn-l’Un) + Ath(xn—l’Un)’

and calculate

BHn 9H
50, 24 A1 TR
-1
5) Test whether al-In/BUn =0 n=l,...,N

If yes, solution is complete
If no, continue to 6).

6) For each n such that aan/aun # 0 calculate

-1
oH
€ = min EEE. min 'uij nl + Bdu Lo sﬁg “
n iEIj auij . iEIj ? n 2
jed: - Jjed. (7)

where min |«| is taken over those i,] such

3H
3

that >0, and the term Au

uij,n min

is a preset small constant used to insure that a nonzero step will be
obtained even 1f all control values at the nth period are zero. Also,

59 ,1/2
3H : 3H
Il _ n
= -2 2= )
oy . n
2




which is called the Euclidean norm.

7 With € calculate

om_@~1)
Ur(lm) = Ur(lm'l) +e_ ﬁg , n=1,...,N
n
8) Forn=1,...,N check
Umin,n s Uém) s Umax,n
I1f ;?e inequalities are satisfied for each component of Uém), return
to .

1f for any component, the inequalities are not satisfied, reduce €
by a factor of 2; and return to 7).

-

This last step requires some additional programming logic. In particular, if
no e, of "reasonable" size can be found such that the inequalities are
satisfied, then one of two things must be done. Either the component (s) of Un
which are violating the constraints can be set to the value of the nearest
bound, or a static optimizer can be called to optimize Hp with respect to Uj.
Experiments with EPOC/TIMM have shown that the latter strategy is generally
more effective, particularly for nonconvex problems. .

In implementing the preceding algorithm it is necessary to compute partial
derivatives of the Hamiltonian with respect to U, and Xj_j; and it is at

this point that the use of PROSE becomes particularly advantageous, since

it provides these partials as a by-product of the evaluation of the objective
function. This occurs automatically, and without the need to store derivative
formula code.* This is important in two respects. First, for complicated
-models the partial derivative formulas are difficult to derive; and second,

in general, storage requirements become a critical factor in solving problems
of the size typically encountered in forest management.

*For more discussion of this process and its implications see [19].
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Discussion of the Solution Method

It was pointed out earlier that the maximum principle provides only necessary
conditions for an optimum, and that these conditioms, are similar to usual
first order conditions from calculus. Thus, one suspects, correctly that
sufficient conditions for a (local) maximum would be that the matrix of
second partial derivatives of H_with respect to U, i.e., the Hessian,

must be negative definite at that optimum. This is not especially easy to
check, but if this or some equivalent condition is not imposed it is quite
possible for the control vector iterations to converge to a minimum or a saddle
point, rather than to a maximum. The condition can be removed if the sequence
of objective function values is required to be monotonic. In other words,

if the goal is to maximize P, then at the end of each iteration it is

checked whether

Clearly, 1if e, = 0 for alln = 1,...,N

this will be satisfied as an equality. If a maximum has been reached at
jiteration (m-1), then (18) can be satisfied only in this manner. On the
other hand if P m-1) ig not a maximum, and (18) is not satisfied, there

must exist a sequence {en} such that (18) can be satisfied. The goal of the
programming logic of EPOC is to modify the ¢, obtained using (17) so that
such a sequence is obtained; and (18) is thus satisfied.

It can be seen from the solution summary in Appendix C that EPOC/TIMM
typically takes very few iterations to converge to a solution. There are

two main reasons for this. The first pertains to the structure of the physical
forest model, while the second is a consequence of the particular implementation
of the control vector iteration algorithm.

The forest model, it may be recalled, is derived so that the control vector
components represent fractions of available area to which a particular manage-
ment activity is to be applied. Hence, their values must lie between zero and
one. In particular then, their magnitude is always order 1; and this leads to
very well-conditioned problems, avoiding numerical difficulties which tend to slc

an iterative procedure.

The method by which the step lengths, e,, are obtained is the other important
factor in the rapid convergence exhibited by EPOC/TIMM. An examination of
equation (17) will show that all quantities used in the computation of e, are
known at the time U, is to be updated. Specifically, no additional model
calls are needed to compute €. This is in contrast to the usual means of
calculating step length (cf. [18]). Because it can be calculated so cheaply,
a different value of ¢, may be used in each period, as the notation suggests.
Thus, in each period the U, are calculated via a step length which applies
specifically to that set of U;. In more conventional control algorithms

one step length would be used for all periods, since obtaining € is
generally quite costly in terms of computation time.
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