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SUMMARY - The mission shaping problem for the Shuttle for a single launch
has been defined in a simple way, for circular target orbits, by Escobal in
Reference 1. The purpose of this memorandum is to describe a methodology
that is fairly robust, to solve the non-linear optimization problem posed in
Reference 1. This methodology uses the PROSE programming language (see
Reference 2) to express the problem to the computer (the I.B. M. 370/3033
was used). The advantage of PROSE in the solution of non-linear optimization
problems is that it has a powerful calculus capability and a set of general

‘ solvers (see Reference 3) that are easily adaptable to the mission shaping

problem.

GENERAL DESCRIPTION - The object of the mission shaping is to maximize

|
‘ the performance functional
|
i

n
J=P- Zp w. , (1)

. as defined in Reference 1, where np is the number of payloads in the mission.

J as formulated is a function of the following independent variables (variables

to be optimally solved for), and other fixed parameters specified in Reference 1.

T = Radius increment from minimum radius shuttle orbit,
ig = Inclination of shuttle orbit,
Q55 = Initial longitude of shuttle orbit at jettison time,
ip; =  Inclination of each transfer orbit (i=1, -~=, np),
‘ A'QT Fi=  Impulsive nodal change between transfer and each final
orbit (i=1, ---, no),
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1

Transfer revolution multipler for each payload (i =1,-e=,n )i

Dwell time inequé.lity dummy (slack) variable for each payload

(1 = 1, =T np)'

- The solver in PROSE that was used to maximize J in (1) was JUPITER,
which is a first order gradient type method (see Reference 3 for more details
about JUPITER).

To facilitate the sblution process it was found useful to transform (1)
to
* 2
J = fs In (Jmax -J), . (2)

and minimize J .
Convergence using (2) was faster, more stable, and more accurate than

if (1) was solved directly. It was simply required to determine fs and Jmax

a priori to the optimization process. It turned out that fs = 50 and Jma,xz
13000 kg were appropriate values for the cases considered here. These
values were easily determined by a couple of trial runs of the computer

program. They should be appropriate for a wide spectrum of cases.

TWO MISSION SHAPING CASES - The two mission shaping cases considered
here had n_ =1 and np = 2 respectively. All the fixed parameters had the

values specii'ied by Escobal in Reference 1 except 'QFZ = 340 deg, T* =150
days, and H = 259.28 km instead of the ones specified. These changes would
make littie or no difference in the solution process.

As in all optimization problems the selection of starting guesses for the .
independent variables is very important. For instance bad choices can cause
slow convergence or even divergence of the solution process. It was deter-
mined here that certain independent variables needed more care in starting
guess selection than others, in that they effected the solution process greatly. )
These_variablés were found to be is and iTi’ .Thus, in order to make the
solution methodology as robust as possible it was designed to be as inde~
pendent as possible of user selections of starting guesses for these variables.
Therefore, only an interval of values for iS need be specified by the user of

the methodology. The methodology uses this interval and certain other
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general information to start the solution process. .The solutions for the
two cases mentioned above are shown together with their starting guesses,
in Tables 1 and 2 respectively. Both cases were run with the convergence
tolerance in JUPITER set to 10-6 (see Reference 3 for details). Note that
the starting guess for iTi is determined from that value arrived at for i—S .
by the relationship

iTi = iS + (:'LFi - is)/2,
as specified in Reference 1 (also, the iFi values are defined in Reference 1
as fixed parameters). The results in Tables 1 and 2 show the starting
guesses for iS are required to be known to the‘nea.rest radian. Contrast

this with the requirement that iS be known to the nearest degree in Reference
4]

CONCLUSIONS - While the methodology described here is fairly robust and

complete as far as it goes, much work still remains to be done. The

following items are obviously important.

1. Test the optimization on cases with more payloads, i.e.,

n =3andn = 4.
P P

2. Extend the methodology to elliptical orbits as specified by

Escobal in Reference 5.

3. Extend the methodology to include more and different independent

variables in the optimal solution,

4. Evaluate other solvers as they become available in PROSE, e.g.,
solver GRG (See Reference 6).
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Variable Name (symbol)

CASE n =1
P

Starting Guess (value)
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Converged Value

r km = 0 = 0
iS radians (1, 2) 1.387740
Qg radians . 1745329 (10 degrees) . 1741926
i’I‘l radians determined from iS 1.438128
radian =0 = 0
AQr ¥ 5
Xl dimensionless 1 1
‘7i minutes 464, 7580 464, 7580
® . ’ 2
J dimensionless @ | =00 —ce-cea--- 5.,461940x10
4
Jkg I ecaa-aa- 1.276445x10




Variable Name (symbol)

CASE n_ =2
p

Starting Guess (value)
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Converged Value

r km =0 =0
is radians (1, 2) 1.523392
'QSO radians ¢ .1745329 (10 degrées) . 7247212
iTl radians determined from iS 1.573886
ip, radians determined 'from ig 1.573886
A'QT,FI radians =0 =0
A'QT,FZ radians =0 =0
)‘1 dimensionless 1 1
)\2 dimensionless - 1 1
7 minutes 464,7580 324.5012
T, minutes =0 =0

2

* ., .
J dimensionless

7.946885x10%

J kg

1.017330x1 04

Table 2



Distribution:

P.
H.
T.
W.
L.
R.
T.

R.
K.
J.
G.
R.
J.
K.

Escobal
Karrenberg
Lang

Reynolds

Sharp
Waldron
Yakura




