Prose is poetry

by Bill Musgrave

In the beginning there was raw machine code. Pro-
grammers had to think at the arithmetic level; they
had to specify each arithmetic operation to be per-
formed to solve their problem. But this was not good.

So programming languages evolved into assembly
language. The programmer was freed from having to
memorize machine codes for each operation because
each now had a mnemonic code. He could also stop
worrying about writing absolute code; he could start
using symbolic addresses, and if he were lucky he
could define and use macros. He saw this was good.
Yet the problem level at which the programmer could
specify his algorithm was again arithmetic.

Higher level languages—Ilike Fortran—appeared
next. With Fortran the programmer could address his
problem at a level above arithmetic—he could now
specify the numerical parts of his algorithm explicitly,
using algebra. Fortran simplified the programming task
to the point where many people, not only computer
programmers, could program.

With the birth of timeshared Basic, more and more
people wrote computer programs. Although Basic was
easier to use than Foriran, the programmer still had to

reduce his problem to sequences of algebraic expres-

sions: The engineer who needed to integrate some
function had to write his own numerical quadrature
routine.

A proud prosody

But for the past ycar or so, Control Data has been
offering a new language, called PROSE, on its
CYBERNET network. PROSE, developed by PROSE,
Inc., of Los Angeles, is a very high-level general pur-
pose language. It offers the things programmers have
come to expect in new general purpose languages—
such as vector and matrix algebra. But this is only
a starting point. PROSE also offers simulation capabil-
ities and calculus operations. Instead of sitting at the
algebra level, PROSE has risen to the calculus level.

PROSE’s ability to address problems on the calculus
level makes programming large and small problems
easy. Users aren’t bothered with the details of the prob-
lem’s solution; they merely formulate the problem,
write it in PROSE, and the PROSE system does the
work.

Programming efficiency is increased and the possi-
bility of errors is decreased. According to Dr. Barnet
Krinsky, a senior staff physicist with Hughes Aircraft,

NoO. PROSE STATEMENTS

1 PROBLEM .CALCULUS.EXAMPLE.PROBLEMS

PROGRAM SYMBOL REFERENCES

BLOCKS (DEFINED=*)
* CALCULU * FUN

GLORAL VARIABLES FOR BLOCK .CALCULU
FOFX Y

#=aisd END OF PREP INPUT DECK
#wiet PROSE PROGRAM ASSEMBLY SUMMARY

BLOCKS

.CALCULU . FUN .PR2000 .PR2001
SUBROUTINES

PR0033
GLOBAL VARIABLES

FOFX Y

wmiss PROGRAM ASSEMBLED UNDER PROSE VERSION 1.10
ENTRY POINT = .CALCULU
PROGRAM SIZE = 137 WORDS
MINIMUM ASSEMBLY FIELD LENGTH

VARIABLE VALUES
Y
1.147793E+00

4 e 3 A e Ao de e A e A At A S e e e i Sk e e de ke e s e e e e e A e dede ek A kAR

2 IDENTIFY FOFX AS .FUN
3 Y=.INTEGRAL (FOFX,0,1,4)
4 ROW PRINT Y

5 FUNCTION .FUN(X)

6 END WITH .SQRT (1+X#**2)
7 END

INPUT CARDS 16

DECK NAME .CALCULU GENERATED ON 10/07/74 BY PROSE VERSION 1.10

= 33565 OCTAL WORDS
OPTIMUM ASSEMBLY FIELD LENGTH = 33565 OCTAL WORDS

“Using PROSE 1 was able
to solve a nonlinear opti-
mization problem of some
complexity in about three

i44‘: weeks. T estimate that this
b EXAMPLE | - DEFINITE INTEGRAL -

x CALCULATE THE DEFINITE INTEGRAL OF SQRT (1+X#*2) FROM 0 TO 1 3 same problem‘ would have
* ¥ taken up to six months to

do in Fortran.” Dr. Krinsky
pointed out two great ad-
vantages of PROSE. First
was the ease with which the
system model was program-
med. And second, he found
it useful to have a number
of optimization techniques
from which to choose. He
was able to experiment with
them and decide which was
best suited to his purpose.
Black box magic

Like many other lang-
uages, PROSE can solve
explicit algebraic problems.
An explicit problem might
be viewed as a black box
machine into which the user
can throw his input, turn a
crank, and have the answer
pop out at the other end.
Problems like this are char-
acterized as having known
inputs and unknown out-
puts.

’An implicit algebra prob-
lem is somewhat more com-

Reprinted from COMPUTER DECISIONS — December 1974

plicated: A function and NO. PROSE STATEMENTS

its value are known, and | _ _ _ _ _ e ——_——————
the problem is to determine [PROBLEM .CALCULUS.EXAMPLE.PROBLEMS

the values of the variables %]

ZRITTTTRTTPTTTTTTTTE TSP TTT LI TR RS VSA R AR ES SRR S S E S S
EXAMPLE 2 - IMPLICIT EQUATIONS-

SOLVE THE IMPLICIT NONLINEAR EQUATIONS
12.5-39X 1452-X3=0

3.317-SIN(X1)-EXP(X2) =0]

1.609-X2*.LOG (X0) =0)

FOR X1,X2,X3]

N

Je e g A Jede sk ok e e de e e Aok Jrde s e de e A ek ok ek de s de ol e e sl ek e e ek

in the function. Solving a
quadratic equation is an im-
plicit problem: A user might
try to use the black box
again, this time putting the
known value of the func-
tion into the. machine

&

NN RN,

through the output hopper. 2 ALLOT X(3), Y(3)
, . 3 X=.DATA(2,2,2)
He could twist the crank 4 FIND X IN .EQS TO MATCH Y [TO ZERO]
backwards and hope the un- 5 PURGE X, Y
knowns will pop out of the 6 MODEL .EQS
i R 7 Y (1) =12.5-3*X(1)*X(2)-X(3)
top of the mgchme. Un 8 Y(2)=3.317-SIN(X(1))-.EXP(X(2))
fortunately, this probably 9 Y (3)=1.609-X(2)*.LOG(X(3))
won’t work. If the function | '© END
is easily invertible, it could " END
be expressed as an ex- | ——————————————————————— T
plicit problem. But invert- INPUT CARDS 26
ing functions is quite often DECK NAME .CALCULU GENERATED ON 10/07/74 BY PROSE VERSION 1.10
difficult. Here’s where | pROGRAM SYMBOL REFERENCES
i !

PROSE is sheer poetry! BLOCKS (DEFINED=*)

*CALCULU "EQS
Mathematical madrigal SUBROUTINES

PRI001

A PROSE program is
built of various kinds of GLOBAL VARIABLES FOR BLOCK .EQS
X Y

blocks. The problem block :
is very similar to its coun- | GLOBAL VARIABLES FOR BLOCK .CALCULU

terpart in other procedure

oriented languages. In the | SOV
problem blocl.(, things like CONVERGENCE CONDITION UNKNOWNS CONVERGED
storage requirements are CONSTRAINTS SATISFIED
specified, variables are in- ALL SPECIFIED CRITERIA SATISFIED
£l
itialized, and input/output {3(;1(1)(}1’\1 gvtmglzn [INITIAL] 1 2 6
routines are performed. It X (1, 1) 2.000000E400 2.294485E400 2.628441E100 ... 2.500787E--00
i i X (2 1) 2.000000E--00 1.342432E-{-00 1.070884E4-00 ... 1.000323E-+-00
is also in the problem X (3, 1) 2.000000E400 2.678497TE+00 3.783681E4+00 ... 4.995219E4-00
block that the user tells CONSTRAINTS 2056 7 094964E_0
Y (1, 1) —1S00000E+400 5.809312E—01 2.720562E—01 ... —2.094964E—09

PROSI? what he wants to Y (20 1) —4981354E4-00 —1260712E+00 —9.188176E—02 ... 6.219238E—10
determine for various mod- Y (3 1) 2227056E—01 2.863608E—01 1.839781E—01 ... 1.643819E—09
el blOCkS, Model blocks de- AR o R 8okx END OF LOOP SUMMARYY e st sdon o s % g s e de e e
fine what the user knows 125 3rxx =0
about the problem. A model block might contain an oM

p gh 3.317-sin x,-e%, =0

equation to be optimized, a system of simultaneous
equations, or the description of a system to be simu-
lated. PROSE also has procedure blocks, function
blocks, and interrupt blocks.

When a user has an implicit problem PROSE lets
him specify what he knows about the problem and
what he wants to learn about it. The programming
language itself selects the proper method for solution
and keeps the tedious solution process below the user’s
level of awareness.

Solving a set of implicit non-linear equations is a

1.609-x.log x, =0

took eleven lines of code in PROSE. The scolution was
found in six iterations through the solver mechanism.
These iterations were controlled by PROSE and need
not be supervised by the programmer. (Above.)

Calculating a definite integral in Fortran or Basic
would probably be done by either numerical quadrature
or a Monte Carlo method. In PROSE it’s done by in-
voking a function named, appropriately enough, .IN-
TEGRAL. Integrating a simple function can be done in

simple matter in PROSE. In Fortran, a programmer as few as seven lines. (Opposite.)

would have to figure out how to adjust his approxima- Minimizing and maximizing functions is another area

tions best, and then he would have to loop through the where PROSE can be expected to excel, since deriva- |
equations until the system converged. In PROSE, all tives are used to find maxima and minima. A problem }
the programmer has to do is specify the equations in block is written to specify an initial set of values for

a model block, run some routine set-up procedure in the variables in the function, then PROSE is told to

the problem block and ask PROSE to solve the model. find the values that maximize or minimize the function.

The function itself is specified in a model block. It
takes PROSE seven iterations to minimize a fourth

Solving the equations degree polynomial.

A definite lyric style

