SLANG
A PROBLEM SOLVING LANGUAGE
FOR
CONTINUOUS-MODEL SIMULATION
AND OPTIMIZATION

gt

Br Joe M. Tuaves, JR.

TR SysTems Growp

ONE Space Park _ ‘.
RepoNDo BEACH. CALIFORNIA

INTRODUCTION

SLANG is a mathematical problem modeling and
solution language. It is one of several languages
in the programming subsystem of the Computer User
Executive (CUE) System developed by TRW Systems.
SLANG is both a procedural and a command language
designed primarily for the "casual" user. Conse-
quently, much attention was paid to programming
ease, "natural" syntax rules, readability, and
debugging ease. On the other hand, SLANG is
designed to permit the solution of very sophisti-
cated mathematical problems, characterized by
iterative solution methods. 1Its translated object
code therefore containe complex numerical solutiom
logic in addition to the object code of its pro-
cedural syntax.

The solution logic is generated by the
presence of language commands such as "SOLVE" for
the solution of simultaneous nonlinear algebraic
equations; and "MINIMIZE" for finding the minimum
of a function of several variables. For iterative
methods, like both of the above, the compiled =ode
will compute partial derivatives from the proce-
dural formulas, of the objective function and/or
constraints with respect to designated independent
variables, as needed by the solution algorithm.

In addition to the above features, SLANG is
user-extensible. The user may program macro
operators using a SLANG macro facility; or he may
program relocatable SLANG or Fortran subroutines,

and may define calling statement syntax for either
macros or subroutines using a syntaxr macro processor.
Thus SLANG may be augmented and tailored to fit
individual user needs.

Language Philosophy

A major indication of the simplicity and
"naturalness" of a programming language is its
readability. To be easily read, it must conform
largely to the structural rules of ordinary written
English. First of all, there is a single main
thought stream of written text from which all digres-
sions arg temporary and which always resumes at a
point immediately subsequent to the digression.
Footnotes, and asides, have this character in
English, as subroutines and macros do in programming
languages. Secondly, in English there is no
counterpart to the direct (non-return) transfer;
consequently, its extensive use in programming
language leads to reading difficulty.

SLANG syntax is designed so that direct trans-
fers are largely unnecessary, although transfer
statements are provided. In keeping with the
pattern of digression with subsequent resumption,
SLANG statements which "open" the main thought
stream (e.g. conditional statements and cycling
statements) have associated "closing" keywords,
such as REJOIN, which resume it again.




®

SLANG statements are free field, allowing
anmple use of indentation; and SLANG operators are
free of unnecessary delimiters; but blanks, as in
English, may have significance as separators. The
use of subordination through indentation and the
use of statement keywords as group labels permits
complex logical constructions to be easily coded
or read. For example, the SLANG conditional
statement may be used to describe a decision tree
in a highly readable manner:

IF  <Conditional>
THEN IF <Conditional>
THEN <Statement>

ELSE <Statement>

REJQIN
ELSE IF <Conditional>
THEN <Statement>

ELSE <Stafement>

REJPIN
REJPIN

Each branch of the decision tree is clearly
labeled by the keywords THEN and ELSE, subordina-
tion is accomplished by indentation, and each
conditional statement is "closed" by the keyword
REJPIN. There is no need for unconditional trans-
fers, and there is no ambiguity.

Problem Solving Features

Problem Model Structure

Mathematical models, in general, are composed
of a set of independent variables, a set of depen-
dent variables, and the functioms, explicit or
implicit, that relate them. Problems may be charac-
terized as direct or indirect, pertaining to
whether the unknowns of the problem are dependent
variables or independent variables, respectively.
The correspondence may be extended to sclution
methods, which involve direct computations or
iterative (indirect) computations. Of course, com-
pound models may be a mixture of direct and indirect
problems, thus calling for a mixture of direct and
iterative solution computationms.

Procedural languages generally do not provide
built-in methods for solving indirect problems, or
even complex direct problems. They only provide
procedural statements that can be used to construct

algorithms for solving such problems.

Direect Methods - Procedural languages do pro-
vide built-in features for treating the simplest
direct problems: automatic parsing for arithmetic
replacement formulas: function subprogrames for
single-unknown multi-formula functions; and proce-
dure subprograme for multi-unknown, multi-formula

functions. All of these features serve to simplify .

the solution of direct problems because they
implicitly handle the bothersome "mechanical" tasks
which the user takes for granted, and they permit
large problems to be treated.as a group of indivi-
dual smaller problems. However, for direct problems
which involve secondary computations (e.g. numerical
integration), procedural languages provide no
built-in methods because such methods require-inter-
vening execution of selected parts of a problem
model, and therefore must control the flow of the
program. This has given rise to a number of simu-
lation languages such as DSL/90,%CSSL, and CSMP
which are structurally compatible with the solution
process of numerical integration in addition to
having procedural capdbilities.

Iterative Methods -~ Strictly procedural lan-
guages offer little capability for indirect problem
solving because not only do such problems require'"
secondary computations, i.e. partial derivatives,
but to be foolproof such quantities should be com-
puted from exact rather than approximate formulas.
This requires that the language processor derive
the secondary computation logic from the structure
of the algebraic formulas in the model.

The simplest class of such problems, although
far from simple, is the solution of a determined
set of nonlinear algebraic equations:

gl (xl, x2 s Xn) = 0

82 (Xl, X2 . xn) = .0 -

En (xl, XZ e xn) s 0

Such a system is said to have zero degrees of free~
dom because the number of unknowns X (independent
variables) equals the number of equality comstraints
g (dependent variables). Several methods exist for
solving such problems, the most general of which is
probably the Newton-~Raphson method. This method
requires that the Jacoblan matrix

gy 3g1
5 ees P
28y 8y
3X; e 3X_

be computed for each iteration.



L

Problems which have more unknowns than
equality constraints, i.e. problems with one or
more degrees of freedom are optimization problems,
because no longer are there a finite number of
solutions; and meaningful solutions can only be
obtained by imposing criteria which fix the values
of the independent variables as well as satisfy
the constraints. The optimization criteria which
accomplish this are

of of

'B_X] 2.9} 0

] 9—f—-
R
where f is an arbitrary objective function of X;

...xn, which is to be optimized.

A common requirement for a general capability
for optimization and nonlinear equation solving
is a mechanism for computing partial derivatives
with respect to designated independent variables.
Such a mechanism is a primary feature of SLANG. It

‘permits complex indirect problems to be solved with

equivalent ease of numerical integratiomn.

Command Structures

SLANG's built-in problem solving capabilities
are implemented by the user through statement
groups called command structures. Statements which
make up command structures are of three types:
commands, command specifications and command
declarations. A command structure is a specific
sequence of such statements which specifies and
executes the solution of a complete mathematical
problem. Composite SLANG programs may therefore
contain several command structures, one for each
complex problem in the makeup of the overall pro-
gram.

Command specifications are used to select
and initialize numerical algorithms from the SLANG
method library. Currently SLANG contains three
specifications, INTEGRATION, OPTIMIZATION and CON-
TROLS.

Commands are SLANG statements that invoke the
execution of algorithms which have been pre-
viously selected and initialized by the appropriate
specification. The primary SLANG commands are:
INTEGRATE, OPTIMIZE, MAXIMIZE, MINIMIZE, STEP
OPTIMIZE, STEP MINIMIZE, STEP MAXIMIZE, PARTIALS,
FIRST PARTIALS, NO PARTIALS, and SOLVE.

Command declarations are used to identify
variables that have special significance in a given
command structure (e.g. independent variables).

The primary declarations are INDEPENDENT(S), CON-
STRAINT(S), and LAMBDA(S).

Associated with every command structure there
is a group of formulas which comprise the mathe-
matical problem to be solved. This group of
formulas is called the command-model. It may be
coded immediately within the command structure or
may reside in SLANG subprograms which are executed
within the command structure. The following para-
graphs treat various command structures.

Numerical Integration - The command structure
for numerical integration is composed of an INTE-
GRATION specification followed by subsequent
occurrences of the INTEGRATE command. The INTEGRA-
TION specification takes the following form:

INTEGRATION (<method>) <block>, <x>, <Az>,

1 : dyn
* (y>’< >_, ....<yn>p < s
“dx

where <method>is the name of a SLANG library al-
gorithm to be used for integration, and <blogk> is
the name of the block (internmal subprogram) con-
taining the differential equations

%1 =f1 (Y1, «os, yn.v z)

A

-

%.= fn (Y15 «ees ?ﬂ" x)
to be integrated, and <Ax> is the step size for
integration variable <x>, INTEGRATION, when

encountered in the execution stream, initializes
the integration process at the current values of
the quantities 2, ¥y, ..., Yy If perturbations
are made to these quantities during integrationm,

the equations must be reinitialized by another
instance of the INTEGRATION specificatiom.

The INTEGRATE command is used to perform
step by step integration of the differential
equations specified. INTEGRATE takes the form

INTEGRATE <block>

where <block> is the name of a previously specified
block. ' vt

Examgle}
INTEGRATI@N DERIVS, X, DX, Y1, DYIDX, Y2,

* DY2DX, Y3, DY3DX

DO UNTIL X GE XEND
INTEGRATE DERIVS

REPEAT

BL@CK DERIVS

Y=1+EXP (X/Z)

DYIDX = Z * Y %% 1.5/ (A * Y] + B * Y] ** 2)
DY2DX = Y1 * Y2 + Y3 * Y2 ** 2

DY3DX = Y * Y3 + Y1 * ¥2

END BLRCK




In this example, no algorithm was specified in the
INTEGRATION specification. This would cause a
"nominal" algorithm to be used, The complete
command structure for integration consists of the
INTEGRATION specification, the block containing
the model to be integrated, and the INTEGRATE
command.

Nonlirear Algebraic Equatioms - The command
structure for the solution of nonlinear equations
is called a solve loop. It belongs to the iterative
class of command structures knmown as eommand loope
which begin with a command, e.g. SOLVE, and termi-
nate with the END LOOP command. The solve loop has
the following structure.

SPLVE  <gy>,<g,>, ..., 9,>

VARY  <Xy>, <Xp>, ey <Xn>
CONTROLS <C;> Value, ... <Cn> Value
Loop SLANG Statements
Model defining <g,>, cees <G>
as functions of <x;»>, sees <X>
END LppP
The <g)>, ..., <g,> are the names of the equality
constraints which identify the nonlinear equations
g1 (X1, «.., Xn)=0
9y, X1, ououy Xn) =0

to be solved.

The VARY (or INDEPENDENT) declaration declares
<X1>, ..., <X_> as the independent variables to be
determined in the process. These quantities must
be initialized (guessed) prior to entry into the

SOLVE loop. The VARY declaration sets up the auto-
matic computation of partial derivarives. That is,
all variables subsequently computed in the SOLVE

model will "acquire" first partial derivatives with
respect to <X)>, ..., <Xn>. These quantities are
used by the numerical algorithm, a Newton-Raphson
method, to iteratively solve the nonlinear equa-
tions.

The CONTROLS specification serves to define
controls to be imposed on the solution algorithm,
i.e. iteration limits, convergence tolerances,
bounding constraints, etc. The <e)>'s are control
keywords pertaining to the particular algorithm.
CONTROLS is optional, since each algorithm con-
tains a nominal set of built-in controls.

Examgle:

Given: A%?+ B2« 10+ C

A+ B + 2= 16

A=B+ 3
Solve for: A, B, C

Equality constraints would be defined as:

EQL = A2+ B2 . (10 + C) —
EQ2=A + B + (2 - 16 —0
EQ3=A - B - 3 ——0

The solve loop would look like:

A=1
{ c=1

B=A-3

initial

guseses

SPLVE EQ1, EQ2, EQ3
VARY A, B, C
DVl = A %% 2 4 B w2
EQ1 = DV - C ™10 <
Dbv2=A+B-16
EQ2 = DV2 + C ** 2
EQ3=A-B-3
END LpgpP
As there are undoubtedly a number of solutions to
such a set of equations (some imaginary), which
solution is found depends upon the initial guess.
It is, of course, up to the user to supply initial
guesses which will converge to the solution he is
looking for. For most physical problems, this
presents little difficulty because the user gener-

ally has some idea about what the answers should
be.

Nonlinear Optimization - SLANG provides
several algorithms and macro-algorithms for non-
linear optimization. Each may be implemented
through g command loop for optimization, i.e. an
optimization loop which has the following structure:

<optimization command> <obj>

INDEPENDENT <xy>, ..., <X, >
<command-declarations> <argument lists
1

n

<statements>
n
"
<obj> = <ezpression>
END Lopp

where <obj> is the name of the payoff function to
be optimized and <X;>, ssey <X > are the indepen-
dent variables. 1In addition, a preceding OPTIMIZA-
TION specification is necessary if the "nominal"
algorithms associated with each command are to be
replaced. The OPTIMIZATION specification has the
form:




ot

e

OPTIMIZATION (<nethod>)

CONTROLS <e1> value, ..., <e,> value

optional

The CONTROLS specification (as a separate statement)
may optionally be included as one of the command
declarations in the heading of the optimization
loop. Its arguments are keywords and numerical
values for the respective controls pertaining to a
given algorithm.

Various "local" optimization methods are
available in the SLANG library. Each one is speci-
fically designed to utilize the partial derivatives
that are invoked by the INDEPENDENT declaration.
All computed quantities occurring within the
optimization loop automatically acquire computed
partial derivative values with respect to <X)>,
«++s <X >. If the optimization method is a second
order method, then both first and second partials
are computed.

Different "nominal" algorithms are associated
with various optimization commands. The OPTIMIZE
command is nominally a Newton-Raphson method which
uses a minimum-norm, least-squares~pseudoinverse
matrix inverter. It does not discriminate between
wminima, maxima, or saddle points, but simply finds
the nearest critical point. The MINIMIZE, MAXIMIZE
and CRITICALIZE commands are associated with a
direction discriminating algorithm which uses the
eigenvalues and eigenvectors of the second partials
matrix to compute the "best" search direction.

The "STEP" commands, STEP OPTIMIZE, STEP
MINIMIZE, etc., invoke macro algorithms (SLANG
macros involving OPTIMIZE, MAXIMIZE, etc.) in
which the search direction (once selected) is held
fixed until a local extremum is found in that
direction. Each fixed direction is therefore a
composite "step", of the overall search, in which
the payoff function is optimized with respect to
the stepping interval in that direction. These
algorithms demonstrate superior convergence capa-
bility for non-quadratic problems.

Constraints - In an optimization process,
constraints of two kinds may be imposed: equality
or inequality constraints. Equality constraints
are generally used to characterize a property of
the modeled process, whereas inequality constraints
usually serve to limit the domain of variatiom of
the independent variables.

Equality constraints take the form of
implicit algebraic equations which are driven to
zero during the optimization process. SLANG per-
mits the constraint matching process to be computed
serially through the use of a nested solve loop, or
in parallel, using the method of Lagrange.

Optimization with serial constrainf matching
may be accomplished using the following optimization
loop structure:

<optimization command> <obj>

INDEPENDENT <x;>, ..., <X >
CONTRBLS <Cy> value, ..., <C,> value

<y)>= <expression> ~

<Y,,>= <expression>
SPLVE <g31>, ..., 9>
VARY <y;>, ..., Yp> B

<g1> = <expression> .

<g,> = <ezprébsion>:

END LggP - "

<obj> = <expression>

END Lp@P '

This method may often be used to some advantage

over the method of Lagrange, because each con- :
straint matched in this manner removes an indepen- '
dent variable (removes a degree of fréedom) from

the optimization process and requires no initial

estimation of Lagrange multipliers. However,

because iterations are nested, it will tend to be
computationally less efficient.

In the method of Lagrange, the following
equations are solved iteratively to locate a local
extremum of the function F:

oG
oF 36 n
—_ o+ + =
X, ‘laxl eee + Am ™ 0
oG

oF 3G . n_
XAttt x =0

n n n

G Xy, ..., xn) = 0

Gy (X1, +ouy X)) = 0




‘vy

where A1, ..., A are the Lagrange multipliers
vhich correspond to each constraint. Lagrange
multipliers are unknown constants that are solved
in addition to the independent variables X;, ...
Xp, during the iterative optimization process.
Consequently, initial guesses of the Lagrange
multipliers must be supplied along with initial
values of the independent variables.

The optimization loop for Lagrange's method
has the form:

<optimization command> <obj>

CONSTRAINTS <G1>, oeuy <G>

LAMBDAS D> eeey <A>

INDEPENDENT  <zy>, ..., <z, >

<g1> <expression>

<G> <expression>

<obj>= <expression>

END Lp@P

1f the user has difficulty in estimating Lagrange
multipliers, he may ignore them and SLANG will
compute good estimates by making a single iteration
of the optimization loop with extra generated con-
straints to remove all degrees of freedom.

This built-in estimation procedure takes ad-
vantage of the fact that when the number of
independent variables equals the number of con-
straints, the optimization problem is reduced to
one of solving the nonlinear comstraint equations.

One may also take advantage of this fact to
solve nested nonlinear equationms, using a variation
of the above structure combined with a nested solve
loop:

CANSTRAINTS <g;>, ..., <g,>

INDEPENDENT <>, ..., <>

SPLVE <ny>, ..., <hm>
VARY <yi1>, ..., Y

<h1>

<expression>

<h,> = <expression>

END LpgP

.
.

<g1> = <expression>

g,> = <expression>

END LpoP

Inequality constraints are also permitted in
SLANG optimization loops. They are treated as e
single barrier constraints with zero as the nominal
barrier; they are identified in a constraints de~
claration by the presence of a plus sign or minus
sign following the constraint name to signify that
the constraints may take only positive and zero
values or negative and zero values.

Example: ’ N
CONSTRAINTS Gl1+, G2-, G3, G4

In this example Gl and G2 are inequality con-
straints, whereas G3 and G4 are taken to be equa~
lity constraints. Both equality and inequality
constraints are represented in the same way in an
optimization loop model.

Example:

Given the above constraint declaraction in
the heading of a command-loop, suppose it is
desired to limit the varation of some independent
variable, X, between the limits 32 and 212, then
two inequality constraints Gl (+) and G2 (-) would
be used. RS

Gl = X - 32 (positive or zero values only)
G2 = X - 212 (negative or zero values only)

Partial Derivatives - SLANG permits the user
to invoke the computation of partial derivatives
of computed formulas with respect to any desig-
nated set of independent variables through the
use of the PARTIALS, FIRST PARTIALS and NO PAR-
TIALS commands. The command structure for compu-
ting partials has the following form:

PARTIALS <z;>, ..., <, >

<statements>

N@ PARTIALS

or,



gt

PARTIALS
INDEPENDENT <z;>, ...

<statements>

NP PARTIALS

The statements lying between PARTIALS and NO
PARTIALS are said to be within the domain of inde-
pendence of the variables z;, ..., =, Of course
the same idea holds true within an optimization
loop or a solve loop, because partial derivatives
are computed with respect to the independent vari-
ables of the optimization or equation solving
process. However, a command structure for partials
may also occur within an optimization loop or a
solve loop for the computation of additional par-
tial derivatives that are required for another
purpose, i.e.

SPLVE <gy>, ..., <g,>

VARY <xy>, ..., <. >
n

PARTIALS <yi>, ..., Y,>

<statements>

<g1> = <expression>
<gp> = <expression>
N@ PARTIALS
Gres® = <expression>
<g,> = <expression>
END L@QP
In this structure, first partials of all computed
variables in the solve loop will be computed with
respect to the variables x;, ..., £ . In additiom,

first and second partials of all variables com-
puted between PARTIALS and NO PARTIALS will be

computed with respect to y;, ..., Yppe In particu-
lar, the constraints <g;>, ..., <g,> would acquire
first and second partials with respect to <Yy1>,
sees <Y,> as well as first partials with respect to
<X1>, ++.5 < >; whereas the constraints N T
veey g > would only acquire first partials with
respect to <x;>, ..., <, >.

The computed partials may be assigned to
specific variables using the DERIV function,

LET <§§> = DERIV (<> / <x>)

or,

2
LET <o o DERIV (4p>/ >, <a>)

.o

To assign the vector of partials of a variable
with respect to all of the aetive independent
variables, the subroutines PAR1 and PAR2 may be |
used: *

CALL PAR1 (Y,Z)

will assign the first partials of Yito the vector
Z. The order of partials in the Z vector will
correspond to the sequential order in which the
active independent variables were declared (through
combinations of the INDEPENDENT, VARY, PARTIALS or
FIRST PARTIALS statements). The PAR2 subroutine
will assign second partials to a vector, but the
order of partials will correspond to a linear array
representation of the upper triangular second
partials matrix.

Discussion

The SLANG command structures and their asso-
ciated execution logic, were designed as building
blocks for analysis program development. Each
command structure provides a formulation and
solution framework for a fundamental problem of
mathematical analysis. They can be easily combined
to solve more sophisticated problems which can be
represented as composites of the respective funda-
mental problems. For example, implicit ordinary
differential equations and multipoint boundary
value problems are both composites of ordinary
differential equations and implicit algebraic equa-
tions; thus they can be readily treated through the
use of INTEGRATION structures and SOLVE loops.

Example - The following is a relatively simple
example of the use of SLANG to formulate a program
for the nonlinear two point boundary value problem

; = - (1+¢Y)
ylo) = o, y(1) = 1

This example was taken from Reference 1, in which
it was formulated as an example of CSSL to compare
with a previous formulation of the same problem in
MIDAS III (Reference 2).

The object of the problem is to determine the
unknown initial condition y(o) such that the ter-
minal condition is met, The iterative method




formulated in CSSL is a Newton-Raphson procedure
which uses the partial derivative wu(t) =— 3y (t)/ay (o)
computed by integrating the variational equation:

- ¥ u

ufo) = 1, ufo) = 1

u =

in parallel with the equation for ;.

This problem is much easier to formulate in
SLANG, because the SOLVE algorithm is a Newton-
Raphson method, and partial derivatives are auto-
matically computed. Thus there is no need to
formulate the numerical algorithm or the variational
differential equation. The SLANG formulation is as

follows:
DYDTO = 1
SOLVE GY1
VARY DYDTO
T=0
Y=20
DYDT = DYDTOQ

INTEGRATI@N DERIVS, T, .05, DYDT, Dya2DTZ2,
4 Y, DYDT
D@ UNTIL T GE 1
INTEGRATE DERIVS
REPEAT
GY1 = v-1
END LooP
PRINT VARIABLES
BL@CK DERIVS
DY2DT2 = (1 + EXP(Y))
END BL@CK
STP
END

The INTEGRATION statement defines the two
derivatives DY2DT2 and DYDT, which must be inte-
grated to solve the second order differential
equation for DYDT and Y respectively. The solution
to determine DYDTO is found using a SOLVE loop, with
DYDTO as independent variable, in which the differ-
ential equation is integrated from T = 0 toT =1,
Convergence is satisfied by the constraint GY1 which
satisfies Y(1) = 1.

One could just as easily have formulated a
system of differential equations with two point
conditions by adding more differential equations in
the DERIVS block and the INTEGRATION specification;
and adding a corresponding set of independent vari-
ables and algebraic constraints in the SOLVE loop.
Moreover, the entire construction could be imbedded
within an optimization loop to solve a parameter
optimization or optimal control problem.

Numericol Experimentation -One major use of
SLANG as a program development tool is in the for-
mulation and trial of numerical algorithms. The
PAR1 and PAR2 subroutines provide access to
analytic partials that may be computed from any
set of formulas. Fortran subroutines, SLANG sub-
routines, and SLANG macros may be constructed and
called from SLANG programs. The fundamental SLANG
algorithms may be augmented by any and all of these
facilities for the generation of special methods to
fit any problem. Several composite algorithms for
optimization (including the "STEP" macro-algorithms)
have been developed in SLANG by such an evolutionary
process of experimentation. The total amount of
effort involved was considerably less than would
have been expended using a procedural language alone.

Procedural Features

SLANG procedural syntax is a cofepatible mix-
ture of the "best" features of several extant
languages; including FORTRAN, MAD, Algol 60, and
SIMSCRIPT. SLANG assignmeéiit statements and sub-
routine calls are identical to Fo#tran. The SLANG
conditional statements are a mix of Algol syntax
and MAD structural rules. And the cycling state~
ments have SIMSCRIPT origin. On the other hand,
some additional features such as the indexed G¢ T
statement, may be original.

General Statement Features

Labels - Statement labels may be either
integers, as in Fortran, or alphanumeric names
appended to dollar signs, e.g. S$BEGIN, $STATEMENT100,
$12N, etc. A particular statement lagbel, SN@DEn,
where n is any integer, has particular significance
with regard to the indexed G@ T¢ statement, treated
below. The end of a statement label is delimited
by one or more trailing blanks.

Continuation and Comments - Statement continu-
ation is signified by an asterisk (%*) appearing in
the first column of a line. A line may be treated
as a comment by the presence of a slash (/) in the
first column. If another slash is placed in the
second column, then the compiler will skip to the
next page before printing. Thus portions of code
may be spaced arbitrarily in the compiler printout.

Identifiers - SLANG identifiers may be of any
length, but identifiers of greater than six charac-
ters will be truncated. The internal representation
of SLANG identifiers may be no more than six
characters.

Debugging Statements

The user may code SLANG source statements for
debugging which may be deactivated in later pro-
cessing by the presence of single commands.

Debug Label - Any SLANG statement may be iden~
tified as a debugging statement by preceding it with
the word DEBUG. Once program checkout has been
completed, all such statements may be deleted by
insertion of the command DELETE DEBUG at the begin-
ning of the source program.




b

Trace Statements - The user may trace the
computation process in a segment of code by placing
the statements TRACE and NO TRACE before and after
the segment. This will cause computed quantities,
referenced by SLANG names and source line numbers,
to be immediately printed. TRACE statements may
also have DEBUG labels, thus they may be deleted
using the DELETE DEBUG statement when no longer
needed.

Control Statements

Conditional Brameching Statements - As pre-
viously illustrated, the SLANG IF statement has the
form

IF <econditional expression>

THEN
one or more
{statements
iELSE
. one or more
optional {statements }
REJBIN

If the conditional is satisfied, the THEN branch is
taken, followed by control transfer to the state-~
ment following REJOIN. Otherwise, the ELSE branch
is executed. Any legal SLANG statements may be
used in either branch. However, if a command-loop
heading statement appears, then the rest of the
heading statements must appear also. - If both the
THEN branch and the ELSE branch contain only ome
statement, then the IF statement may be a single
statement without REJOIN, i.e.

IF <conditional expressiom>
* THEN <statement>
* ELSE <statement>
Conditional Cyeling Statements - Conditional
cycling may be accomplished with constructions of
the form:
D@ [g:%%f] <eonditional expression>
: optional
™ g —,
<statement label>
AFTER <expression>

optional {EXiT
LP@PS

REPEAT

DO WHILE causes transfer to the statement following
REPEAT if the conditional expression is not satis-
fied, whereas DO UNTIL causes transfer if the con-
ditional is satisfied.

Conditional Expressions - Conditional
expressions are made up of relational expressions
connected by the logical operators @R and AND.
Relational expressions are of the form:

<arith. expr.><relational operator><arith. expr.>

or,

(<arith.expr.>) <relational operators
(<arith. expr.>)

In the first form, one or more blanks must
separate arithmetic expressions from relational
or logical operators. The relational operators
are:

EQ
NE
GT
LT for
GE
LE

A S

v

A

ta (v

The Uneconditional Cyeling Statemepit - The |
SLANG equivalent of the Fortran D statement is:

D@ F@R <ident.> = <ar£;h. expr.> TP

* <arith. expr.> STEP <arith. expr.>

optional ' -

REPEAT

Direct Transfer Statements - SLANG direct
transfer statements include the G¥ TP statement,
6@ T@ <statement label>
and the indexed GP T@ statement,
GP TP NPDE (<arith. expr.>)

The statement label must not include the dollar
sign if it is an alphanumeric name. In the indexed
GP TP, the arithmetic expression will be evaluated
and truncated to the nearest integer 1, resulting
in control being transferred to the statement
labeled $NODEi.

Return Transfer Statements - The SLANG state-
ment
JUMP T@ <statement label>

causes a direct transfer to the labeled statement
with pushdown storage of the tranmsfer point. The
next subsequent occurrence of the statement

JUMP BACK

causes direct return to the transfer point plus
one statement, -

Simplified Input/Output

The input/output capabilities of SLANG are
simplified extensions of Fortran input/output
features. User-written Fortfan subroutines may be
called from SLANG to utilize full Fortran input/
output.




List Directed Imput - The SLANG input state- The GL@YBAL and L@CAL declarations are also
ment READ DATA causes a free field data file to be used for dynamic dimensioning. The following are

read from the standard input unit. The data file legal statements:
- contains input data statements of the form: - GLPBAL x(10,20), VY(N,M), Z(2*N+1)
. name = value, . LBCAL  MUCH(JUNK)

for an undimensioned variable and Storage allocated using GL@BAL applies for all

name = value,, value,, ..., value_, subprograms, whereas L@CAL storage allocation must
1 2 ’ n be specified in each individual subprogram.

or,
name (indezx) = value,, valuey, ..., value,, Internal Subprograms - SLANG internal sub-
for dimensioned variables. The end of a data file programs are called blocks. -They constitute pro-
is designated by a dollar sign. tected segments of coding (within a program or
subroutine) having the following structure:
Simplified Output Commands - SLANG provides S,
the output commands PRINT VARIABLES, PRINT PAR- BLACK (<dummy parameter list>)
TIALS, and PRINT FIRST PARTIALS, for printing ety

optional
values according to built-in format. Each of

these commands may have an associated argument .

list that specifies the variables to be printed optional {EXIT

and their respective order. The PRINT PARTIALS

-and PRINT FIRST PARTIALS statements cause printing

of all of the active partial derivatives for each B
variable in the order that the independent vari- END BLACK T <
ables were declared. ’

e

Except for thelr special use in conjunction with

1f no argument list is present, then printing  the INTEGRATE command, blocks are invoked by the
of the associated data for all variables will be EXECUTE statement:

printed in alphabetical order.

, EXECUTE <block>(<actual parameter list>)
Text Printing - Output messages and labeled S——

output may be printed using the PRINTPUT statement: cptional
PRINTQUT <name >, namey>, ..., <name > Actual parameters are transmitted by value; thus
n entire arrays may not be transmitted.
PRINTAUT $<text>$ y
4 PRINTQUT $<text.>8 <name.> S<text >$ The EXECUTE statement may also be used to
' 1 1 ’ n execute blocks that reside in separate subprograms.
* <name > This is enabled by the EXTERNAL BL@CK specification:
n

The first character of the field will specify car- EXTERNAL BLOCK <block 1>, [block 2>,

raige control, therefore PRINTAUT $1$ will cause
page ejection on a line printer whereas PRINTQUT
$0$ will cause a line to be skipped.

External Subprograms -~ SLANG subroutines like
Fortran subroutines, are individually compiled
programs. They have the following form:

Subprograms
ummy list>
The SLANG user may construct and invoke three SUBRGUTINE <name> (<d .lfffffff? 8 )
types of subprograms: blocks (internal), subrou- . optional
tines (external) and macros (substitutive). In
each case the communication of variables is carried ENTRY <name> (<dummy parameter list>)

out according to different rules. optzonal
Global and Local Variables - All SLANG vari- RETURN

ables are treated as global to all subprograms

unless otherwise specified by the LOCAL declaration,

LACAL <variable list>

If the LPCAL statement appears without a variable
list, then all variables in the program or subpro-
gram will be treated as local. In this case,
specific variables may be declared global using
the GL@BAL specification. In addition, both L@CAL
and GL@BAL may be used to specify dimensioned vari- CALL
ables.

END

Each ENTRY may have its own distinct parameter
list, as if it were a separate subroutine, Sub-
routines are invoked using the CALL statement:

<ngme> (<actual parameter list>)




e

SLANG subroutines have a facility for non-
standard returns to designated points in the
calling program. This is accomplished by placing
statement labels in the actual parameter list of
the CALL statement (with leading dollar signs on
numbers as well as names) and marking the corres-
ponding position in the SUBROUTINE or ENTRY para-
meter list with dollar signs. Non-standard return
is accomplished using the statement:

RETURN i
vhere 1 is an integer corresponding to the ith

dollar sign in the SUBROUTINE or ENTRY parameter
list.

Examzle:
Calling Program Subroutine
: SUBROUTINE (A,B,$,$)
Call SUB(A,B,$10,5L6) :
: RETURN 1
10 <statement> :
: RETURN 2
$L6 <statement> :
: RETURN
END :
END

The RETURN 1 and RETURN 2 statements causes return
transfer to statements 10 and L6 respectively,
whereas RETURN causes return transfer to the state-
ment following CALL SUB.

The actual parameters for SLANG subroutines
are transmitted by name as in Fortran. Thus entire
arrays may be transmitted.

SLANG/Fortran Commmieation - Fortran sub-
routines may be called from SLANG programs using
the CALL statement also. Variables may be trans-
ferred through the actual parameter list as if the
subprogram were a SLANG subroutine. However, no
other communication medium is available, i.e.
SLANG global variables do not have meaning in the
Fortran subprogram.

Fortran programs may also call SLANG routines
using the statement:

CALL SLANG (6 <name>)
where <ngme> 1s the name of the SLANG subroutine.

The transfer of arguments is considerably more
involved, and is beyond the scope of this paper.

Macros - A SLANG macro may be defined as

follows:
MACRO <name>
replacement text ]

END MACRO

The macro is invoked (substituted) at compile time
by the presence of the macro name, optionally
followed by an argument list:

<name> (<argument list>)

The macro call must occupy one line of text unless
it is set off by asterisks, i.e. a macro SUM might
be used in either of the following ways:

SUM (X,Y)

or,

Z = *SIM (X,Y)*/Z

The replacement text may be any SLANG statements,
but if the call is imbedded within other state-
ments (as in the second example) care must be .
exercised to generate the appropriate replacement. ..
In addition to SLANG statements, macro time state-
ments (characterized by having "MC" as the first
two letters) may be used in the replacement text.
Some examples are: - )

a. Macro time assignment statement

MCLET <macro varigbles = <mdcro expression>.

b. Macro time conditional G¢ T¢@
MCGPTR <macrc ilabel> IF <macro eonditional>. 5.

€. Macro time loop

MCFPR <macro variable>=<macro variable>
STEP <macro variable>T@<macro variable>
INSERT <replacement text> REPEAT
d. Output of the value of a macro time
variable
MCVAL (<macro variable>)

Output statement labels may be produced using the
macro LAB(n) where n is a positive integer. Unique
labels will be produced on every macro call. To
generate a macro time label, which is merely a scan
transfer point for MCG@TY statements, the macro
MCL(n) may be used, where n is any positive integer
or macro variable.

The position of arguments in replacement text
is specified by the macro ARG(n) where n is a
positive integer or macro variable designating the
position of the argument in the calling sequence.
An argument may be referenced by name by using
ARGNAME(n). This is useful if it is possible that
the argument might be a macro, since a reference by
means of ARG(n) will call that macro immediately,
whereas reference by ARGNAME(n) will not. ’

Macro variables are designated by MCVn where
n is a positive integer from 1 to 9. A number,
MCLIST, may be referenced which has a value equiva-
lent to the number of arguments in the current macro
call.

The following 1s an example of a SLANG macro.
Macro time statements are written in italics,




hereas SLANG replacement text is written in block
ype.

MACRP PAY@FF
. CONTINUE
MCLET MCV1 = 1,
MCL(1) IF INDEX LE MCVAL(MCV1)
THEN @PTIMIZE PAYQFF

CONTRAINT C1
LAMBDA L1
INDEPENDENT ARG (1)
MCFOR MCV2 = 2 TP MCVI
INSERT, ARG(MCV2) REPEAT
MCLET MCV1 = MCVI + 1.
ARG (MCV1) = ARG (MCLIST)

ELSE MCGPTP MCL(1) IF MCLIST GR MCVIH.

MCFgR MCV2 = 2 T@ MCV1
INSERT REJQIN
REPEAT

END MACRP

or this macro, the macro call
PAYPFF (A1, A2, A3, A4, AAA)
?AJ enerate the replacement text:
‘F INDEX LE 1
THEN @PTIMIZE PAYQFF
CONSTRAINT C1
LAMBDA L1
INDEPENDENT A1l
A2=AAA ,
ELSE IF INDEX LE 2
THEN @QPTIMIZE PAYQFF
CANSTRAINT C1
LAMBDA L1
INDEPENDENT Al, A2
A3=AAA
ELSE IF INDEX LE 3
THEN @PTIMIZE PAYQFF
CONSTRAINT C1
LAMBDA L1
INDEPENDENT A1,
A4=AAA
ELSE
REJRIN
REJPIN
REJ@IN

A2, A3

Glven more arguments in the macro call, the
generated decision tree would have more branches,
each THEN branch containing an OPTIMIZE loop

heading with successively more independent variables.

The LET Operator - Macros as defined above
may also be called using the LET operator. This
alters the calling syntax slightly so that it
resembles a function call:

LET <argl> = <maero> (<arg2>, <arg3>, ...)

This has no impact on the macro definition.

Extension Facilities

The SLANG macro facility is a restrictéd
version of an open syntax translator which makes
up the first pass of the SLANG compiler. ‘This
translator is a Fortran implementation of the ML/1
syntax macro processor developed by P. J. Brown
at University Mathematical Laboratory, Cambridge,
England (Reference 3). ML/1 15 a very powerful
and well designed syntax macro translator that is
highly machine independent.

9.

SLANG syntax translation is accomplished by
a system-defined set of macros which translate SLANG
into a Fortran-like intermediate language called
MODTRAN. To augment SLANG syntax, the user may
also code translation macros using the ML/1 langu-
age. As ML/1 is a recursive language, the user need
not know MODTRAN, but may translate new syntax into
legal SLANG syntax, which then will be translated
into MODTRAN by the "compiler" macro pack.

REFERENCES

1. J. C. STRAUSS, D. C. AUGUSTIN, M. S. FINEBERG,
B. B. JOHNSON, R. N. LINEBARGER, F. J. SANSOM

The SCI Continuous System Simulation Language
(CSSL)

Simulation, December 1967

2. G. N. BURGIN
MIDAS III - A Compiler Version of MIDAS
Simulation March 1956_

3. P. J. BROWN
The ML/1 Macro Processor
Communications of the ACM October 1967

4. R. E. BELLMAN and R. E. KALABA

Quasilinearization & Nonlinear Boundary Value
Problems

American Elsevier Publishing Co. New York 1965



7. D. E. KNUTH and J. L. McNELEY

BIBLIOGRAPHY SO0L - 4 Symbolic Language for Gemeral Purpose

1. P. NAUR, J. W. BACKUS, F. L. BAUER, J. GREEN, Syetems Simidation
C. KATZ, J. McCARTHY, A. J. PERLIS, IEEE Transactions on Electronic Computers .
H. RUTISHAUSER, K. SAMELSON, B. VAUQUOIS, J. M. August 1964
WEGSTEIN, A. VAN WIJNGAARDEN, M. WOODGER
Revised Report on the Algorithmic Language - 8. M. D. McILROY
ALGOL 60 Macroinstruction Extensions of Compiler h
Communications of the ACM January 1963 Languages

Communications of the ACM April 1960
2. R. W. FLOYD

The Syntaz of Programming Languages - A Survey 9+ S+ SCHLESLINGER and L. SASHKIN

IEEE Transactions on Electronic Computer - POSE: A Language for Posing Problems to a
August 1964 Computer .

Communications of the ACM May 1967
3. E. I. ORGANICK

Algorithmic Languages and Compilers 10. B. M. LEAVENWORTH i
Lecture Notes, University of Houston, 1965 Syntax Macros and Extended Translation

Communications of the ACM November 1966
4. B. ARDEN, B. GALLER and R. GRAHAM .

The Mad Manual 11. M. I. HALPERN - .
University of Michigan Press, Ann Arbor 1965 Toward a General Processor for Programming
Languages .
5. A. J. PERLIS, R. ITTURIAGA, T. A. STANDISH Communications of the ACM January 1968 ®

A Preliminary Sketch of Formula Algol

; ) 12. S. ROSEN, ED.
g;:??g}gsénst. of Technology, Pittsburgh, Pa., Programming Systems and L s
McGraw-Hi11, New York 1967
6. H. MARKOWITZ, B, HAUSNER and H. KARR

SIMSCRIPT: A Simulation Programming Language 13. P. WEGNER

; ; Programming Languages, Information Structures '
Prentice Hall, Englewood Cliffs, N.J. 1962 and Machine Organization

McGraw-Hi11,. New York 1968
APPENDIX

The following are examples of iterative problems solved in SLANG. The SLANG problem is given, followed by
the output data from the last iteration in which convergence was achieved. Each of these problems was
solved with "nominal” controls, thus convergence could probably have been more rapid if special controls
had been imposed for each one.

MIDAS ITI/CSSL TWO POINT BOUNDARY VALUE PROBLEM

The following are the execution results of the problem treated on pp. 17, 18. The problem converged
in 5 iterations of SOLVE (Implicit Equation Solver) yielding y(o) = 2.53711.

SLANG Program

/ ecees SLANG VERSION OF MIDAS II1/CSSL TWO POINT B.V, EXAMPLE PROBLEM oee..

DYDTO=]1

SOLVE GY1 -
VARY DYDTO )
T=0
Y=o
DYDT=DYDTO
INTEGRATION DERIVS,T,.05,DYDT,DY2DT2,Y,DYDT
DO UNTIL T GE 1

INTEGRATE DERIVS

REPEAT
GYl=Y=]

END LOOP

PRINT VARIABLES

BLOCK DERIVS
DY2DT2 = ={1+EXP(Y))

END BLOCK .

sTop

END




Final lterstion Xasults
INPLICIT EQUATION SOLVER

ITERATION NUNAER s

. IMPLICIY INDEPENDENT VARTABLES

oYbTO 2.53711te00

1WPLICIT CONSTRAINTS NORNe  1,13687E-13
Gyl =1.13087E-12

DG/OV
Gvl ©.28763€-01

DG/DV APTER SCALING
Gyl 1.000008+00

RANK ), ABSOLUTE VALUE DF DETERMINANT 1, 00

DG/ DOV INVERSE
Gyl 1.59063£00

A0w SCALE FACTORS
1.59043E+90

INITIAL COLUMN NORMS SQUARED
1.00000€+0C

FINAL COLUNN NORMS SQUARED ¥
1.30000E+00 )

COLUBN PERMUTATIONS
1

-
RES [DUALS
o.
DELTA v
1.408106~-13
|
|
\ DELTA V 7 ¥ '
7.1268636=14
VARTABLE VALUES
DYDTD  2.537T11Ee00 DYDT =7,64216E-01 DY2DT2 =3.T18208+00 GY¥l  =1.136A7E-13 7 1.C2000EeC

|
|
; Y 1.00000E+00
|

! IPTIMAL DESIGN AND CONTROL EXAMPLE

This example, taken from Reference 4, minimizes the functional

J(y,a)=%fl(x2+y2)dt+;—
(]

over the function y and the parameter a, where

| dx _ -, d8
dc = Y, x(0) = ¢, 3t

‘ Reference 4 formulates the Euler equations and boundary conditions

=0

X = ax+y, x(0) = C

(N

= xtya, y() =0
as0 u(0) = a(0)
i= yx

and solves the problem by the method of quasilinearization. A Fortran program is given which contains
approximately 100 statements.

‘ In the following SLANG formulation, the equations are identical to Reference 4's, but the method is

| a simple parameter optimization with an imbedded two point boundary value problem involving four differen-
‘ tial equations.



SLANG Program

eesee OPTIMAL DESIGN AND CONTROL EXAMPLE seeeo BELLMAN AND KALARA
Xy STATE VARIABLE
Yy CONTROL VARIABLE
Ul=MU), LAGRANGE MULTIPLIER
A + DESIGN PARAMETER

NN NN NN

READ DATA
MINIMIZE J ~
INDEPENDENT A
SOLVE GY
VARY YO
Y = Y0
X=] *
U=A
1=1 -
=0 .
INTEGRAT ION DERIVS,Tee1s2+20D0T,X,XD0Y,Y,Y¥DAT,u,UDCT
DO UNTIL T GE 1
INTEGRATE DERIVS
REPEAT
GY=Y
END LOOP g .
J = 1/2 + A%%2/2 o ~
PRINTOUT ToX,yYyUsAsd
END LOOP
BLOCK DERIVS .
1D0T = X%%2 + Ye%2 . f
XDOT = «A®X + Y
YDOT = X ¢+ ASY
upaT = Y=X
END BLOCK
PRINTOUT J.A
STOP
END

L4
'+

7insl Iteration Basults
INPLICIT FQUATION SOLVER

ITERATION NUMBER 2 [

INPLEICIT INDEPENDENT VARIABLES
¥n =6.40259¢-01

IMPLICIT CONSTRAINTS NORMs  1,86916E-~16
Gy 1.8091 86E~1¢

0G/0v
GvY 1.85113E40C

OG/0V AFTER SCALING
oY 1.00000E+00

RANK 1, ABSOLUTE VALUE OF DETERMINANT 1.0CD0CEeCO

0G/DV INVERSE
oY 8,40210E~0)

ROw SCALE FACTORS
SeeC210E="" e

INTTIAL COLUMN NORNS SQUARED
1.00L00E+0N

FINAL COLUMN NORMS SQUARED
1.000C0E+L0

COLUNN PERMUTATIONS
1

RESIDUALS
1.57772¢~30

DELTA V
~1.00974E~16

DELYA v /7 V
1.377C8E-1¢

M 1,000C0Ee00L X 5, 40210E-01 ¥ 1.06916E-16 U -3.92795E-"T A 2.329PAE-C1
J 8.47253E-01




: GUAST=LINEAR TRANSFORWATION
~ 1TERATION MURBER B
NEMTON=RAPHSON MATRIX

AON NUMBER VALUE

1 1.2206190E¢00

FIRST PARTIALS OF v
~5.9858785E-11

NORM SQUARED OF FIRST PARTIALS OF U 5.9858T08E-11, LAST ITERATION 2960 692E~753
EIGENVALUES AND EJGENVECTORS

EIGENVALUE EIGENVECTOR
1. 4, T6T2616E~L3 1.030000UEeCC

DF/DX (SCALED AND ROTATED)
-3,7411740E~12

JELTA X (SCALED AND ROTATED)
T.8676374E-10

L

BOUNDS ON DELTA X
6. 2500000E-02

CHANGES IN INDEPENDENT VARIABLES NORMS &, 904TT36E=11 T .
| %.904T738E=11 . ’

‘ ABSOLUTE VALUE OF DELTA X / X
| 2.1058876E-10

J 867253601 A 2.32900E~01

PERTODOGRAM ANALYSIS PROBLEM

This example, taken from Reference 4, determines the parameters o, and w; to match the periodic
| function

‘ R
b f(t) = L a; cos w.t

¢ i

. i=1
| ‘ a set of observatioms b,, i=l, ..., M, where M>2R. Reference 4's approach is to convert the problem
into a variational problem involving multipoint boundary values, and use the method of quasilinearization
to minimize the quantity.

M 2
i T (f(t;)-b)) Lo
f=1 177

The SLANG formulation is a simple parameter optimization with the desired parameters a;, Wy 88

M
independent variables, and ¢ (f(ti)-—bi)2 as payoff functiom.
i=]1

SLANG Program

/ eeeees PERIDDOGRAM ANALYSIS PROBLEM ossee BELLMAN AND KALABA
/ A = ALPHA
/ W = OMEGA
/

VARTABLE A(3),W{3),B(8),T(8),R(8B)
$IN READ DATA -
MINIMIZE SUMSQ
INDEPENDENT A(1)oAL2),A03),WiL) W(2),WI3)
SUMSQ = 0
DO FOR I = 1 TU M
F=0
OO FOR J =1 TO 3
F = F « ALJI®COStW(JII=TL(I))
REPEAT
R{I)=F=-B(1)
SUMSQ=SUMSQ+R (T )2
REPEAT
PRINT VARIABLES

. END LOOP
PRINT VARIABLES

GO TO IN
END



‘ NEWTONSQAPHSON MATRIX

Final Itevstion Rasults

QUAS ] =L INEAR TRANSFORMATION

I1SSRATION NUNRER

RJw NUMRER VALUE

1 T.1945017E40C ~7.86231516-C1 6. 740009BE-01 3.068TONDESLD -1.253797TIE60N %,9€~01 Vafe=]

2 ~T.86231%1£-01 T.5142736E+00 1.2216430E407 =6,C303436E400 ~1.3967234Ee00 -2,0907200E09)

s )
3 6+T40009AE=01 1.2214430E00N 6.4362085F+00 =1.1A9525A2000 ~1,13471225400 8.0131%478-7]
, %

. 3.00079CCE NN =4,.0303658E¢rN ~1.16962588400 7,0077832E601 ~7.99264435¢90 1.0160636F 0PN

] 1025079716407 =1,356T234E000 =1, 13471226000 =7.9926863E400 1.%645081Een] 2.1033C40F ¢4

& $505500134E-01 =2.0C9TSSBE=-02 6. 113846TE-01 1.,01606366¢C0 2.1933963F¢AC 1.190955]1F ")
FIRSY PARYIALS OF U

=4.3036811E-12 ~1,71868764E=11 T,$56T237E=11 2.22940%CE=11 =3.4422634E=11 -5.6580068%~11

NOR# SQUARED OF FIAST PARTIALS OF U
EIGENVALUES AND EIGENVECTORS

1,1016943E~1Cs LAST I1TERATION 3.4482032%5-06

EIGENVALUE EIGENVECTOR
le 40 1181230E=0]1 B.7864839i-01 ~9,642%R01E=02 =T,2045382E~03 =R, 8344629F-%4 T,6944399E-2
~6,6119494E-01
2. 1.1038507€E=01 5.47622081€=32 9.9179405E=01 }.3450806E-12 I.0773464£-02 5.3368973E-27
~9,4433111F-02
3. 2.1 VOASBLE=02 ~T7.4282860E-03 =1,6192508E-C2 9.9947889E=01 4.1711420E-03 9.66185635-93
=2.4T75314E-02
4. 6.1509221E+00 1.7045151E-02 =1.2974603E-02 ~3.0618006E=05 08.5948219E~01 ~%.07808725-01
-~5.1163911E-02 i .
5. 3.8053307E¢00 8,19382556-02 ~3.94996469E=02 =2.5280624E-03 4,94632326-N1 8.1102649E-01 N *
2.99821 TRE-21 .
LD 5.12262264E~C1 4.6681750F-0) 7.2348C23E~-02 2,8332302E-02 ~1.2118303E=01 ~2.7477915€-01
8.2813080E-0)
DF/DX ISCALED AND ROTATED)
2.3850T15E~11 2,4161349E~12 2,8270672E-12 1.7231184E-11 -2,8146225E~11 -4,32%9C21E~11
NELYA X (SCALED AND ROTATED}
=S, 7958882E-11 -2.1892207€~11 =1,3025178E=09 ~2,7945124E~12 7.3966864E-12 A, 4432731F-11
BOUNDS ON DELTA X L o
2.5203001E-01 1.2743192E-01 2.0272198E-02 2.787173%E-C1 S5.1394351E-91 A.47098376-01 C
. \

CHANGES IN INOEPENDENT VARJABLES
=6.2383146E~13

ABSOLUTE VALUE OF DELTA x / X

1.3790533F=12 ~2.63405258~11 ~4,2640811E~12 -1, T4T2954E~1]

v

NDRMs ],1738221€E~10 -
1.129%654F-11

642384630E-13 2.T567301E-12 2.63212048=10 3.82383I4E=12 B8.6071433E-12 3,303%872E-11
VAR JABLE VALUES .

A 9.99976E-01 . 99886E-01 1.00073E-01 L] 1.600C0E+20 4,52613E-01
-6.79691E-01 ~8.20313£-0) =3,675046-01 =3.818746-01 3.51082E-7
~0. f 3.51064E=01 1 8.00000E+00 J 4.00000%¢00 = T.ONONYEerN

R =6.50702E-C5 =1.08731E-04 =9.32344E-0N2 =1.9219%€-23% =4.BYAALSE~CY
=3.50602£-C% ~1.824C9E=C3 0. SUmsQ 3.496705-18 T Ce

8.32000€~-01 1.670005+00 2.50000E+00 3.330C2E«03 4.17C"F+00
€.00C00€EeCC -0. L] 1.11C12E¢C0 2.92995Ce00C 3.461971€e00

ORBIT DETERMINA:iON PROBLEM

This example, taken from Reference
boundary value problem.

X =u

. X

6T Gl
y=v

4, is an orbit determination problem formulated as a multipoint

The four differential equations




V= - gyl

are to be solved subject to the multipoint boundary conditions y(ti) = (x(ti)—l) tan 01, i=1,2,3,4

This problem was solved in Reference 4 by Quasilinearization. A FORTRAN program is given which requires
approximately 120 statements, not counting utility subprograms. e

The SLANG formulation utilizes a SOLVE loop which varies the initial conditions x(0), y(0), u(0) and v(O)
. to satisfy the multipoint constraints gy = y(ti) - (x(t )-1) tan Oi, i1=1,2,3,4

=1.0, t,=1.5,t, = 2.0. Integration is carried through to t = 2.5 where final results

for t. = .5, ¢t 4

are printed. 2

3

SLANG Program "

S g

/ eseeees ORBIT DETERMINATION AS MULTIPOINT BeVe PROBLEM seeee REFERENCE &

/ SHOGT ING METHOD %
/
X0=1.0 )
Y0=0 - .
uo=0 N
VO=2%3,141£59/3,564

TAN1=SIN(.2512971/C0S(.251297)
TAN2=SEN(+5102% )/CUS(.5102¢4 )
TAN3=SIN(. 783269 )/C0S(.783¢9 )
TAN-=SIN(1.07654)/C0S(1,07¢54)
SOLVE 61462463 ,6G4 ‘
VARY X0,Y0,U0,V0
T=0
A=X0
| Y=v0

| : u=uo
V=vO ]
. INTEGRATION DERIVS,T 054X, XDOT Y, ¥YDOT,U,UDOTV,VDOT
| DN UNTIL T GE 2.5 '

INTEGRATE DERI1VS
IF 7 EQ o5 THEN Gl = Y = (X-1)#TAN1

- ELSE IF T EQ ) THEN G2 = Y = (X~])*TAN2 3 5;r :
. ELSE IF T €Q 1.5 THEN G3 = Y = (X=1)#*TAN3
* ELSE IF T EQ 2.0 THEN G4 = Y = (X=1)®TAN&
REPEAT
PRINT VARIABLES .
END LOOP

BLOCK -DcR1IVS
DEN = (Xx%32 + V'*ZD"I..
UDOT ==X7DEN
VDOT =-Y/DEN
xXpoT = U e
YDOT = Vv .
teND BLOCK
STNP
END




dax

LIS

Oen

61
62
el
e

sl

63
Lo

Tany

v+ Tisel Jgevsties Basults
l"’ll“l EQuUATRUN SOLVER

o JTERATION AumdEP 7

varlABLE valuLS

LOORALLII T [ 62 139472014 63 .
2490720821 . Tang - TAND  9,98980%-0)  TaANé
-2 ¥ L EaTSI3E="E U . =t,BR267E-N] - VDOT
4 ®0OY ZeTE- 1KY 1.9999080CC X
\j e =722Fe

I4PLICIT TRDLPzaleNT VARLABLES
) 9»99!;0 . v. ~£.59892E~:5 D 4,4751%E=-27 ¥vC
NORNe .3, 85108E=13

BMPLICTT CONSTRAINTS e
Te89e7E=16 63 - 3.9°7199E=14 G4

e a2 el g

. BG/CY

‘=200281 k= i YeB2¥TIE-l) -1..=zx ke 1 4e972926-01
© CebeletcTF- 1 G2 322E- 1 -, J31326=%1. O, TRe38E~.1

“1e22 T2e  Welalole-') - JLA5I0Fers  103047AEeLD

2o FU6TenT zo32eV3ie ) wagl S1°ZeN  LebL3néEe. !

. LG/LY &PTib SCALING
L2

. 389e=l  9,eltnlEe) -1.13"9e-' 4435942E=51

T a3 BOTELER "] B.8% TEer ] =3,010° 4E=i1  6413795E-T)

; -t.vaosSL-'l FNSTLE] 'l_-z.lvlt!!-*l 50 39946E~N1

T oe2,12%6 i U 1o ld06ke T =2.96701E= 1 3.(3545E=N1
MANK @y ABSULUTE VALUE CF DFTEKMINANY  1,69358E-3

. DG/DV INVERSE
BESl =6.08829Ee.1 2,401i2keS]l ~7.20290ReIC
=he9032.5¢ Te03832( 0% =é, 331878~

2¢Tok S:e i =)o00iT2ke71
SReBe3TILe.

3.572218¢
£a3. BLIFSI " =20717938ecT

z.:n&aafo
TROW SCALE FACTORS
-0e29253E-01 | 3o BTI2IE=)

INIYIA COLUNN NDA®MS SQUARED
L Ae39esTEY 1 Toloves:dIf 9,5 483E-11

d.TeeéiE--; 14 89298E-01

6,92900E-01

fluAL CLLUNN NURRS SJUARED
L Ao BRBATEC L o TadbeETl ae481LBE- T 617693E-CS

e SRLUM PERRUTATIONS
. - 1

Re S 10UALS .

0.3779~E-20 BeITT90E=20 -6, DatTOE~2T ~a¢ B46T0E-27
. DELTa v .

3. THOESE=L2 . 2.12260¢-16 ~1,05895E-13 1.042JTE=1D.
.. DELYA V 7 ¥ .

lnlitsli-li 9,01\635-;9 3o WE1JE~CY  208423E-1)

B YLIA LITES R Y
1.4%878Ee~ 1
—2a87 8386 "2 v

< 1el0389Ee s ¥OOT
. 606TEE- 1
leod21sg-12
’ -

1e4921aF-"2
2480 tEey =
4,000%F- |
2087600500

&
]







